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Abstract. We show that time correlation between electrons requires that the Dyson time ordering
operator, T, differs from its uncorrelated value and spatial electron-electron correlation be present. In
this paper we decompose T into an uncorrelated term, Tunc, plus a correlated term, Tcor = T — Tunc,
which leads to time correlation in time dependent external interactions. Effects of time correlation between
electrons can be observed. Two examples are presented. In transfer ionization the time correlation operator
incoherently changes the shape of an electron-electron Thomas peak. In double excitation the influence of
Tcor in amplitudes for coherently interfering pathways changes resonance intensities and profiles.

Understanding how electrons communicate about
time requires ideas about both correlation and time.
The mechanism for electrons to interact is the
electron-electron Coulomb interaction, which is the
source of spatial electron correlation (1). Without
this spatial correlation the electrons are independent
and cannot communicate. Time is often regarded
as a parameter common to both the Schrodinger-
wave and Newtonian-particle equations. However,
the way in which time operates is quite different in
the wave and particle limits. In the quantum wave
limit of broad delocalized wavepackets, operators for
time are difficult to define (2), as reflected in Pauli's
remark (3) that it is "impossible to find a self ad-
joint (local) time operator conjugate to any Hamil-
tonian with a bound spectrum (such as an atom)".
Fortunately the mathematics of quantum mechanics
is straightforward. The concept of time correlation
has been used in non-equilibrium statistical quantum
mechanics, where it is similar to spatial correlation
(4, 5).

In this paper for the first time we specifically ad-
dress the question of how time correlation between
electrons affects cross sections for two electron tran-
sitions. The key conceptual tools of this paper are
temporal correlation of the external interactions and
spatial correlation between electrons. Both are re-
quired for time correlation between electrons. We
give two examples in which time correlation between
electrons plays an observable role in atomic reaction
cross sections. The first case is a kinematic peak in

a reaction in which electron transfer and ionization
both occur. In this case time correlated and time un-
correlated amplitudes add incoherently. The second
case is double electron excitation, where coherent re-
action pathways interfere. In the second case time
correlation between electrons produces a large ob-
servable effect on both the shape and intensity of a
double excitation resonance.

In general, time correlation in many-body systems
is basic to understanding timing among subsystems,
cause and effect, dynamic control, and information
processing. Transmission of information in multi-
electron quantum systems depends on how electrons
are correlated in time. Control of reaction pathways
in chemical and biological reactions (6, 7, 8), appli-
cation of fast atomic switching (9), time dependence
in multi-electron quantum computing and quantum
communication (10, 11) and in general dynamics of
nanostructures (12, 13, 14) all rely on understanding
time correlation in multi-electron systems.

Time dependence is imposed on a quantum system
(2, 15) by an external time dependent interaction,
Vj(t). The general expression for the probability am-
plitude, dfi(t) =< f\Uj(t,ti)\i >, for the transition
of one or more electrons from \i > at time ti to \f >
at time t may be described most conveniently in the
interaction representation (5, 16) using the evolution
operator, t//(£,£'), which satisfies,

(1)
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with the initial condition limt_>_oo Ui(t, — oo) = /.
The formal solution for the evolution operator may
be expressed as a time ordered exponential (16, 17),

(2)

°° (_j\k ft ft
,^T • • • / T(VI(t^...VI(tk)}dil...dkk,

=0
 k- Jt< Ju

Ui(t,ti)=Texp{-i V!(t')dt'} =

where T is the Dyson time ordering operator,

(3)
£

xVI(t1)VI(t2)...VI(tk).

Here 0(t—tf) is the Heavy side step function. The sum
above is taken over all possible permutations, P, of
the parameters 1 ,2, . . . , k. The Dyson time ordering
operator, T, imposes ordering of the Vj(tj) interac-
tions in time to enforce causality in the time evolu-
tion of the system (16). Here Vf(t) = ̂  Vjj(t) is
implicitly summed over electrons.

We seek correlation in time between the V/(t/)'s,
which provide (5) the time dependence to the quan-
tum wave amplitudes, a/;(t), via Eq.(2). Requiring
that correlation in time be independent of the mathe-
matical form of V/(£), we use the only time dependent
term available other than V/, namely the time order-
ing operator, T. All time dependence hi T arises
from the 9(ti — tj) terms in Eq.(3). Thus, time cor-
relation may be removed by replacing all 0(ti — tj) by
a constant. Then T[V/(ti)V/(t2)... Vjfa)] is a sim-
ple product of Vj(tj) and is therefore uncorrelated in
time. Hence there can be no time correlation in £//.
Therefore, we now separate the T operator into two
terms,

•L ~~ J-unc i \-L J-unc) — J-unc i J-cor- (4)

where Tunc is the uncorrelated part of T, and Tcor =
T — Tunc, acting on Vi(i\) . . . Vi(tk), is our time cor-
relation operator. In first order in Vj there is no time
correlation. In second order one has,

+0(t'-t)VI(t')VI(t)

where,

whence it is easily shown that,

*/)) = sign(i - t'}

(5)

)) (6)

)]. (7)

Calculations using T ~ Tunc correspond to an inde-
pendent time approximation (18), where the Vj(tj)
interactions are not correlated in time. In second or-
der a two step process is reduced to two independent
one step processes (19, 20).

Since entanglement is conceptually and mathe-
matically similar to electron correlation (5, 21), our
time correlation operator, Tcor, may also be regarded
as a time entanglement operator. Observable effects
due to Tcor occur in both single (22, 23) and multiple
electron transitions (5). However, in this paper we
consider only the effects of time correlation between
electrons, i.e. how electrons communicate with one
another about time.

In multiple electron transitions correlation in time
between electrons generally requires spatial electron-
electron correlation in addition to time ordering
(5, 24). Physically this is obvious. In the uncor-
related independent electron approximation without
exchange, the probability is represented as a prod-
uct of single electron probabilities, namely, P(t) =
afi(t)\2 = Uj\ < £|tf/XMOfo > t2 = IW).

In this limit there is no mechanism for time correla-
tion between transitions of different electrons. With-
out spatial electron correlation phase information be-
tween electrons is lost. Only when spatial electron
correlation is included can Tcor cause time correla-
tion between different electron transition amplitudes.

In calculations presented in this paper electron ex-
change is included. Nevertheless, we note that it is
conceptually convenient to neglect exchange. This
simplifies the meaning of 'an electron' and 'an elec-
tron transition' and also it allows one to regard elec-
trons as distinguishable. Inclusion of exchange is
mathematically straightforward, but adds complex-
ity both conceptually and technically. In fast atomic
collisions the effects of exchange are often small.

In two examples below we have evaluated the ef-
fects of the Tcor operator in calculations through
second order in Vi(t) by separating the second or-
der term in Uj into parts corresponding to the Tunc
and Tcor parts of T. Calculations of cross sections
are done with and without the Tcor time correlation
terms.

As a first example let us consider a resonant re-
action in which both electron transfer and ioniza-
tion occurs, namely the purely second order electron-
electron Thomas peak in transfer ionization (25). In
this two step example a positively charged particle
first interacts with an electron in an atomic target.
Then the target electron rescatters from a second
target electron such that it travels out of the colli-
sion with the projectile. Because of the presence of
electron correlation the probability for this reaction
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cannot be written as a product of two independent
electron transitions (transfer and ionization). The
cross section for this peak is shown in figure 1. The
effect of sequencing of the two interactions is carried
by the Tcor term in [//. The effects of Tunc and of
the time correlation operator Tcor add incoherently
since the corresponding matrix elements differ by a
factor of i (27). The node in the contribution from
time correlation at the center of the resonance is typ-
ical of anomalous dispersion (26), which connects the
correlated contribution to the uncorrelated contribu-
tion and forces the correlated contribution to zero
at the center of our resonance. This peak has been
studied in detail experimentally (28, 29, 30).

10'1

10'14-

no time correlation

5 10
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FIGURE 1. Cross section for transfer ionization as a
function of the momentum transfer, q, in 2.5 MeV proton
helium collisions in the vicinity of the electron-electron
Thomas peak showing the effects of time correlation. Full
curve, full second order calculation including both Tcor

and Tunc terms of Eq.(4); long dash, approximate calcu-
lation using only the uncorrelated time term, Tunc; short
dash, approximate calculation using only the correlated
time term, Tcor. In this case the effects of Tcor and Tunc
add incoherently as explained in the text.

A second example is double electron excitation
(31). In figure 2 we present calculations of the elec-
tron emission spectrum in the region of the (2p2)lD
and (2s2p)lP resonances of helium excited by 200
eV electron impact. Unlike the previous example,
there is interference between reaction pathways in
this case, namely direct single ionization and sin-
gle ionization proceeding through the double exci-
tation resonance. The effect of time correlation is
amplified when the relative phase between compet-
ing pathways is close to (2n H- I)TT. In figure 2 one

sees a strong effect from the time correlation term
on both the shape and the intensity of (2p2)lD and
(2s2p)lP resonance spectrum. In the (2p2}lD reso-
nance time correlation changes the resonance shape
from a window-type to a nearly asymmetric reso-
nance profile. At the same time the intensity of the
(2s2p)lP resonance increases by a factor of three.
The effect of time correlation varies with both scat-
tering angle, Of, and emission angle, 9e. Calcula-
tions for double electron excitation by fast ion im-
pact also show clear effects due to time correlation.
These resonances have been studied experimentally
using high-resolution spectroscopy for both electron
(32) and ion (31) impact.
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FIGURE 2. Effect of time-ordering on the autoionizing
(2p2)lD and (2s2p)lP resonances of helium in electron
emission spectrum excited by 200 eV electron impact.
The electron angle of emission is 60° and the projectile
scattering angle is 30°. Full curve, full second order cal-
culation including the TCOr term of Eq.(4); broken curve,
approximate calculation using only the uncorrelated time
term, Tunc- In this case the effects of Tcor and Tunc are
partially coherent. The cross section is normalized to the
background of direct ionization.

In summary, we have considered time correlation
between electrons in fast two electron transitions.
Time dependence enters via an external Vj(t). Time
correlation among the V/(tj)'s in the time evolution
of the system is carried by the Dyson time ordering
operator, T, which may be decomposed into an un-
correlated term, Tunc, plus a time correlation term,
Tcor = T — Tunc. Interaction between electrons oc-
curs via the two-body electron-electron correlation
interactions, i.e., I/TY^ Coulomb interactions, some-
times modified by mean field potentials. This inter-
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action produces spatial electron correlation. When
correlation in time is combined with spatial cor-
relation, electrons are connected in time, as well
as in space. This gives time correlation between
electrons, which governs time sequencing in multi-
electron quantum systems. Effects of time corre-
lation (entanglement in time) are observable. Two
examples were given, one with and one without in-
terfering pathways to a final state. Our approach
applies to impact of ions, electrons and photons (in-
cluding multi-photon effects) on atoms. Extension
past second order in V/, and also to more complex
(e.g., nanoscale) systems, both appear feasible.

We thank P. Ivanov, V. Mergel, B. Shore and A.
Goodman for stimulating discussions. This work was
supported by the Division of Chemical Sciences, Of-
fice of Science, U.S. Department of Energy. R.D. ac-
knowledges support by the Heisenberg Program der
DFG.

REFERENCES

1. C. Froese Fischer, Atomic, Molecular and Optical
Physics Reference Book, (G.W.F. Drake, ed.), AIP
Press, NY, Chapter 21, (1996).

2. J.S. Briggs and J.M. Rost, Eur. Phys. J. D 10, 311
(2000); M. Murao, M.B. Plenio, S. Popescu, V. Ven-
dral and PL. Knight, Phys. Rev. A 57, R4075 (1999).

3. W. Pauli, Encyclopedia of Physics, edited by S.
Flugge, Vol. 5/1, 60 (Springer, Berlin, 1958);

4. R. Balescu, Equilibrium and non-equilibrium Statis-
tical Mechanics, John Wiley, NY, 1975), Chap. 21,
Sec. 1. A simple product form is uncorrelated with
this definition of correlation.

5. J.H. McGuire, Electron Correlation Dynamics in
Atomic Collisions, (Cambridge University Press,
1997).

6. C. Winstead and V. McKoy, Adv. At., Mol., Opt.
Phys. 43, in press.

7. L.R. LeClair and J.W. McConkey, J. Phys. B 27,
4039 (1995).

8. L.J. Dube and P. Despres, The Physics of Electronic
and Atomic Collisions, ed. Y. Itikawa, AIP Conf.
Proceedings, March 2000.

9. S. Gao, M. Persson, and B.I. Lundqvist, Solid State
Communication 84, 271 (1992). (1993).

10. C.H. Bennett, D.P. DiVincenzo, J.A. Smolin and
W.K. Wootten, Phys. Rev. A 54, 3824 (1996).

11. Colin P. Williams, Quantum Computing and Quan-
tum Communications, (Springer, NY, 1999).

12. E.J. Heller, M.F. Crommie, C.P. Lutz and D.M.
Eigler, Invited Talks of ICPEAC XIX, Whistler,
Canada, AIP Conf. Proc. 360, 3 (1995).

13. J. Gao and J.B. Delos, Phys. Rev. A 56, 356 (1997).
14. M.T. Frey, F.B. Dunning, C.O. Reinhold, S. Yoshida,

and J. Burgdorfer, Phys. Rev. A 59, 1434 (1999).
15. J.H. McGuire and O.L. Weaver, Phys. Rev. A34,

2473 (1986).
16. M.L. Goldberger and K.M. Watson Collision Theory,

(Wiley, NY, 1964).
17. A.L. Fetter and J.D. Walecka, Quantum Theory of

Many-Particle Systems. McGraw Hill, San Francisco,
CA, (1971).

18. A.L. Godunov et al., in preparation.
19. G.R. Satchler, Direct Nuclear Reactions, (Oxford

University Press, 1983), p. 300.
20. P.K. Bibdak and R.D. Koshel, Phys. Rev. C 6, 506

(1972).
21. R. Grobe, K. Rzazewski and J.H. Eberly, J. Phys. B.

27, L503 (1994).
22. H.Z. Zhao, Z.H. Lu and J.E. Thomas, Phys. Rev.

Let. 79, 613 (1997).
23. L. Mandel and E. Wolf, Optical Coherence and Quan-

tum Optics, (Cambridge University Press, 1995), Sec-
tions 4.3.1, 4.6.3 and 8.2.

24. L. Nagy, J.H.McGuire, L. Vegh, B. Sulik, and N.
Stolterfoht, J. Phys. B 30, 1939 (1997); N. Stolter-
foht, Phys. Rev. A 48, 2980 (1993).

25. S.G. Tolmanov and J.H. McGuire, Phys. Rev. A, 62,
032711 (2000)

26. J. H. McGuire and O. L. Weaver, J. Phys. BIT, L583
(1984).

27. J.H. McGuire, A.L.Godunov, S.G.Tolmanov,
H.Schmidt-Bocking, R.Dorner, V.Mergel, R.Dreizler
and B.W.Shore, Intl. J. Mass Spectrometry 192, 65
(1999).

28. J. Palinkas et al., R. Schuch, H. Cederquist and O.
Gustafsson, Phys. Rev. Let. 22, 2464 (1989).

29. V. Mergel, R. Dorner, M. Achler, Kh. Khayyat, S.
Lencinas, J. Euler, O. Jagutzki, S. Nuttgens, M. Un-
verzagt, L. Spielberger, W. Wu, R. Ali, J. Ullrich,
H. Cederquist, A. Salin, C.J. Wood, R.E. Olson, Dz.
Belkic, C.L. Cocke, and H. Schmidt-Bocking, Phys.
Rev. Let. 79, 387 (1997); V. Mergel, Ph.D thesis,
Universitat Frankfurt (1996).

30. R. Schuch, private communication.
31. A.L. Godunov, V. A. Schipakov, P. Moretto-

Capelle, D. Bordenave-Montesquieu, M. Benhenni,
A. Bordenave-Montesquieu J. Phys. B: At. Mol. Opt.
Phys., 30, 5451-5477 (1997).

32. J. Lower and E. Weigold, J. Phys. B: At. Mol. Opt.
Phys., 23 2819-2845 (1990)

188

Downloaded 01 Jun 2004 to 128.3.35.20. Redistribution subject to AIP license or copyright, see http://proceedings.aip.org/proceedings/cpcr.jsp


