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We have measured the electron-transfer process in fast collisions (630–1200 keV/u) of protons with helium,
which is dependent on the projectile scattering angle and the final electronic state. The fully differential data
accompanied by theoretical second-order perturbation theory allow a detailed insight into the mechanism of
electron-transfer processes.
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I. INTRODUCTION

Electron transfer as the source of energy transfer is a hot
topic especially in microbiology and also in chemistry and
physics. It also attracts quite some interest in astronomy and
astrophysics. While in microbiology and chemistry usually
the relative velocities between the transfer partners are rather
low, the “interstellar” electron transfer happens at MeV or even
GeV energies. One might expect that nearly 100 years after the
formulation of modern quantum mechanics and perturbation
theory, the transfer process, especially in a simple system like
p + He → H0 + He+, where just four particles in total are
involved, should no longer need to be discussed. A short review
of the literature shows, however, that there are many papers
published on this or similar collision systems, and many more
on electron-transfer processes in collisions in general. But only
a tiny fraction of them takes the finally populated electronic
states into account: theories usually focus on the ground state
(initial and final states), while experiments integrate over all
finally populated electronic states. With increasing projectile
energy the measurement of the projectile energy loss, which is
a key observable in identifying excitation processes, becomes
more and more challenging. On the other hand theories get
better if the number of relevant interactions is rather low, e.g.,
at high projectile energies.

Most of theories at high energies are based on different
Born approximations: first- and second-order plane wave,
distorted wave, time dependent and independent, etc. (see [1]
for a recent review). All of them concern an approximation of
the four-body wave function with a corresponding boundary
condition. No analytical solution of the Schrödinger equation
with mutual Coulomb potential between particles is known
in this case, and its numerical solution is restricted to
relatively low energies. It became clear a long time ago,
that first-order Born terms are not able to describe fast-
projectile capture processes even at very small scattering
angles. In turn, second-order Born terms include summation
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and integration over the intermediate eigenfunctions of both
final fragments. This problem also demands consideration of
various approximations and simplifications, the validity of
which can be verified only by comparison with experiment.
Even within the models, the resulting matrix elements are six-
and nine-dimensional integrals with a few highly oscillating
integrands, the calculation of which needs special numerical
techniques. That is why the theoretical treatment of such
“simple” processes is not trivial.

Here we investigate the reaction p + He → H0(n) +
He+(n′) at around 1 MeV projectile energies and small (up
to 1.5 mrad) hydrogen scattering angles. In the literature
two main mechanisms for electron transfer are distinguished:
kinematic capture and the Thomas process (see [2,3] for a
review). In classical physics the main requirement of electron
transfer is that the projectile proton and electron have equal
and parallel velocities.

Kinematic capture is a pure quantum-mechanical process,
described by Oppenheimer, Brinkman, and Kramers (OBK)
[4,5]. It can happen at any relative velocities and angles of the
captured electron and projectile proton. The OBK term leads
to a main contribution to the single-differential cross section
(SDCS) at very small scattering angles around 0.1 mrad.

The Thomas process [6] originates from the classical
description by Thomas in 1927, who suggested a double-
scattering process leading to electron capture at high impact
energies: The projectile scatters at a target electron at a fixed
angle of 60◦. In the next step, this electron elastically scatters
on the target nucleus again at 60◦, so finally the electron
becomes accelerated from rest to projectile velocity and in the
same direction. Alternatively the second scattering process
can also occur between two target electrons with a slightly
modified collision geometry: 45◦ instead of the former 60◦

is necessary. Furthermore, this so called electron-electron
Thomas process [7] by definition leads to an additional target
excitation, as the second electron gains the same momentum
vector as the captured one. Both Thomas processes have a quite
rigid collision geometry and therefore a discrete momentum
transfer that leads to distinct structures in momentum space.
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This fingerprint shows up in the transverse momentum transfer,
i.e., the projectile scattering angle, and is 0.45 mrad (e-e) and
sin(60◦) × me/mP = 0.47 mrad (N -e), N stands for nucleus.
Quantum mechanics and the broad initial or final state of the
electron momentum, i.e., the momentum acceptance for the
capture process, smear out the δ structure to a broad peak that
is centered around the original value. The first observation
of the Thomas process in the projectile scattering angle was
reported by Horsdal-Pedersen et al. [8]. Recent experiments
by Fischer and co-workers [9] have validated the velocity
dependency and also the enhancement of the cross section
around 0.5 mrad [1,10].

Nowadays the experiments measure the projectile and
recoiling ion in coincidence and are able to determine in
addition to the scattering angle also the overall energy
exchange. This Q value (the difference of the binding energies
in the initial and final states) is related to the recoil longitudinal
momentum K|| via the following relation [11,12]:

K|| = − Q

vp

− vp

2
. (1)

From this equation it is obvious that a separation of different
electronic states is more difficult for higher projectile velocities
and quite easy for low impact velocities, as for example shown
in Ref. [13].

In this paper we report differential cross sections for
electron transfer in proton-helium collisions at 630, 1000,
and 1200 keV/u with sufficient resolution to distinguish final
electronic states. We used the cold target recoil ion momentum
spectroscopy [14–16] technique and a spectrometer optimized
for high momentum resolution. A momentum resolution of
0.04 a.u. was achieved, which is a factor of 4 better than the
resolution obtained in the best previous experiment in ion-atom
collisions [17].

II. EXPERIMENT

The experiments on electron transfer in proton-helium
collisions were conducted at the Institut für Kernphysik,
University of Frankfurt. The proton beam was provided from
a 2.5 MV Van de Graaff accelerator. A 5 m collimation
distance was used to obtain a beam of 0.5 × 0.5 mm2 that
intersected with the helium target. Shortly before the target
a set of electrostatic deflector plates was used to clean the
beam from charge-state impurities, originating from electron
capture in the beamline. After the beam passed or interacted
with the target, a set of electrostatic deflector plates separated
the main beam, which was dumped in a Faraday cup, from the
charge-exchanged projectiles (H0). The latter were detected on
a 40-mm-diameter time- and position-sensitive multichannel
plate (MCP) detector with delay line anode [18,19] and used
as the trigger for data acquisition. A supersonic gas jet at room
temperature with two stages provided an internal cold and
well-localized target beam. With an applied driving pressure
of 18 bar, the gas expanded through a 30 μm nozzle, was
geometrically collimated 35 mm above the nozzle with a
0.5 mm aperture to a diameter of 1.5 mm and 2 × 1011

helium atoms/cm2 at the intersection point with the proton
beam. Helium ions created by the interaction with the protons
perpendicular to the initial beam axis are extracted by applying

a weak electrostatic field of 8.96 V/cm. To gain maximum
momentum resolution, the spectrometer was built in a time-
and space-focusing geometry. Therefore an electrostatic lens
in the extraction field focused the 1.5-mm-wide interaction
region down to 0.25 mm (see [20] for general information
about time and space focusing). Furthermore, a field-free drift
tube was added behind the extraction field to compensate the
target size in the time-of-flight (TOF) direction. Another time-
and position-sensitive MCP detector (80 mm diameter) at the
end of the field-free drift tube was used to detect the singly
charged He+ ions. The overall spectrometer length from the
interaction point to the detector was 168 cm. This resulted in
times of flight of 16 μs for He+ ions and a 4π solid angle for
transverse momenta up to 9 a.u.

As the final state exhibits only two particles, the neutral
H0 and the recoiling He+ ion, one balances the momentum of
the other [21]. Nevertheless, the two particles are measured in
coincidence to suppress background and to have a reference
signal for the TOF measurement. The momenta shown were
deduced from the He+ ion, as this has by far the better
resolution. A rather low count rate of 50 to 500 Hz on the
projectile detector and the good spatial separation of target
ionization (the main source of random coincidences) and
electron transfer on the recoil-ion detector provided a nearly
background-free measurement. In Fig. 1(a) the momenta on the
plane of the recoil detector are shown for a projectile energy of
1200 keV/u. The vertical lines represent the electron transfer
marked as “single-capture”; the round blob is target (single)
ionization. The remaining broadly distributed events for small
py,jet stem from residual gas ionization. According to Eq. (1)
the longitudinal momentum p|| in a capture process can be
calculated for a given projectile velocity �vp and Q value. Since
different states in the electronic excitation of the single-capture
process exhibit different Q values, the separation of several
states can be observed in Fig. 1(b). Here the transverse
momentum of the He+ recoil ions pθ which corresponds to
the scattering angle of the projectiles is plotted versus the
longitudinal momentum for −3.6 < p|| < −3.0 a.u. The elec-
tronic ground state of the ion He+(n′ = 1) (p|| < −3.3 a.u.)
was clearly separated from the excited states He+(n′ � 2)
(p|| > −3.3 a.u.). Additionally the higher excited states of
H0 (n � 2) could be resolved from the H0 (n = 1) ground
state. The momentum resolution achieved in the longitudinal
direction was 0.04 a.u. for all three projectile energies [see
Figs. 2(a)–2(c) for Eproj = 630, 1000, and 1200 keV/u,
respectively].

III. THEORY

A. General formulation

The amplitude of the charge-transfer reaction under con-
sideration takes the form

Tf i =
√

2〈�−
f ( �R, �ρ,�r2)|Vp1 + Vp2 + VpN |�+

i (�rp,�r1,�r2)〉.
(2)

In Eq. (2) �rp is the proton coordinate, �r1 the coordinate of the
electron adjoint to the proton in the final state, and �r2 the same
for the He+ residual ion. The symmetrization is already done
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FIG. 1. (Color online) (a) The momenta in the plane of the recoil
detector for a projectile energy of 1200 keV/u. The vertical lines
represent the electron transfer marked as single-capture; the round
blob is the target single ionization. The remaining broadly distributed
events for small py,jet stem from residual gas ionization. (b) The
transverse momentum of the He+ recoil ions pθ vs the longitudinal
momentum p|| for the same projectile energy as in (a). The events
are distributed around p|| = −3.42 a.u., −3.35 a.u., −3.20 a.u.,
and −3.12 a.u. (Gaussian fit analysis), and are attributed to the
single-capture ground state, projectile excitation, target excitation,
and simultaneous projectile and target excitation, respectively.

in Eq. (2). The other definitions are as follows:

�R = m�rp + �r1

m + 1
, �ρ = �rp − �r1,

or

�rp = �R + 1

m + 1
�ρ, �r1 = �R − m

m + 1
�ρ ≈ �R − �ρ.
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FIG. 2. (Color online) The longitudinal momentum distribution
of the recoil ion (He+) for the projectile energies (a) 630, (b) 1000,
and (c) 1200 keV. At least four peaks can be resolved from left to
right: the electronic ground state of the projectile H0(n) and target
He+(n′) (n = 1, n′ = 1), projectile excitation and target ground state
(n � 2, n′ = 1), projectile ground state and target excitation (n =
1, n � 2), and simultaneous projectile and target excitation (n �
2, n′ � 2).

We also note �pp · �rp ≈ �pp · �R + �vp · �ρ. For very small scat-
tering angles we suppose that the nucleus is immovable,
i.e., rN = 0. Here m = 1836.15 a.u. is the proton mass, and
μ = m/(m + 1) ≈ 1 is the reduced mass.

All six Coulomb potentials between particles now appear
as

Vp1 = − 1

|�rp−�r1| = − 1

ρ
; Vp2 = − 1

|�rp−�r2| ≈ − 1

| �R − �r2|
;

VpN = 2

|�rp − �rN | ≈ 2

R
; VN2 = − 2

|�rN − �r2| ≈ − 2

r2
;
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VN1 = − 2

|�rN − �r1| ≈ − 2

| �R − �ρ| ;

V12 = 1

|�r1 − �r2| ≈ 1

| �R − �ρ − �r2|
.

We write the initial state in the form

�+
i (�rp,�r1,�r2) = ei �pp ·�rp�0(�r1,�r2)

≈ ei �pp · �R ei�vp · �ρ�0( �R − �ρ,�r2). (3)

The final wave function satisfies the equation[
1

2(m + 1)
�R +

(
1

2μ
�ρ − Vp1

)
+

(
1

2
�2 − VN2

)
+ E

]

×�−
f ( �R, �ρ,�r2) = [Vp2 + VpN + VN1 + V12]�−

f ( �R, �ρ,�r2)

(4)

with boundary conditions

�−
f ( �R, �ρ,�r2)R→∞ ∼ ei �pH· �Rϕ0(ρ)φ−

α (�r2) (5)

where φ−
α (�r2) is in the general case the eigenfunction of the

helium ion. We denote the transferred momentum as �q = �pH −
�pp. In Eq. (4) the total energy

E = p2
p

2m
+ εHe

0 = p2
H

2(m + 1)
+ εH

0 + εHe+
α . (6)

For charge-transfer (CT) reactions we set εHe+
α = εHe+

0 = −2;
for transfer-ionization reactions εHe+

α = k2/2. Choosing the
vector �vp as the z axis, it follows from Eq. (6) that qz =
vp/2 + Q/vp. In the case of the CT reaction Q = εHe

0 − εH
0 −

εHe+
0 ≈ −0.403 [see (1)] . The perpendicular component of the

vector �q is q⊥ ≈ mvpθp.
Because the proton is a heavy fast particle, we look

for the solution in the form (the so-called paraxial
approximation)

�−
f ( �R, �ρ,�r2) = ei �pH· �R �−

f ( �R, �ρ,�r2). (7)

Inserting (7) into (4) and taking into account (6), we
obtain[(

1

2(m + 1)
�R + i�vp · �∇R

)
+

(
1

2μ
�ρ + εH

0 − Vp1

)

+
(

1

2
�2 + EHe+

α − VN2

)]
�−

f ( �R, �ρ,�r2)

= [Vp2 + VpN + VN1 + V12] �−
f ( �R, �ρ,�r2). (8)

Now as in the eikonal approximation we neglect �R/2(m + 1)
in Eq. (8). Here we have a rather strong argument for
doing this as the proton mass is in the denominator. In
the residual equation we can replace zR = vpt and obtain

from (8)

i
∂

∂t
�−

f ( �R⊥, �ρ,�r2; t)

=
[
−

(
1

2μ
�ρ + εH

0 − Vp1

)
−

(
1

2
�2 + EHe+

α − VN2

)

+Vp2(t) + VpN (t) + VN1(t) + V12(t)

]
�−

f ( �R⊥, �ρ,�r2; t).

(9)

Now �R = ( �R⊥,vpt). The initial condition of this “time-
dependent” equation takes the form

�−
f ( �R⊥, �ρ,�r2; t)t→∞ = ϕ0(ρ)φ−

α (�r2). (10)

Equation (9) recalls the widely known time-dependent ap-
proach when the proton is considered from the beginning like
a classical particle (the source of the external time-dependent
Coulomb field), but here this equation appears on the basis of
a pure quantum approach and is applied only to the calculation
of the final wave function.

The matrix element (2) reads like a nine-dimensional (9D)
integral

Tf i =
√

2
∫

d3Re−i �R·�q
∫

d3ρei �ρ·�vp

∫
d3r2�

−∗
f ( �R, �ρ,�r2)

×
[
− 1

ρ
− 1

| �R − �r2|
+ 2

R

]
�0( �R − �ρ,�r2). (11)

The single-differential cross section for charge-transfer reac-
tions takes the form

dσ

dθp

= m2θp

(2π )
|Tf i |2. (12)

B. Closure approximation: Distorted-wave Born approximation

We denote the operator Ĥ0 = (Ĥ H
0 − εH

0 ) + (Ĥ He+
0 −

εHe+
0 ). The formal solution of Eq. (9) can be written as

|�−
f (t)〉 = e−iĤ0t |C(t)〉,

and

i
∂

∂t
C( �R(t), �ρ,�r2; t) = eiĤ0t

×
[

2

R(t)
− 2

| �R(t) − �ρ| − 1

| �R(t) − �r2|
+ 1

| �R(t)− �ρ − �r2|

]

×e−iĤ0tC(R(t), �ρ,�r2; t), (13)

with C(t)t→∞ = ϕ0(ρ)φ−
α (�r2).

Now we apply the closure approximation to (13), replacing
Ĥ0 → Ē > 0. In this case Eq. (13) can be easily integrated,
and we obtain

C( �R(t), �ρ,�r2)clos = exp

(
i

vp

f (t)

)
ϕ0(ρ)φ−

α (�r2)

and

f (t) = ln

[ {vp| �R(t) − �ρ| + �vp · [ �R(t) − �ρ]}2 {vp| �R(t) − �r2| + �vp · [ �R(t) − �r2]}
[vpR(t) + �vp · �R(t)]2 {vp| �R(t) − �ρ − �r2| + �vp · [ �R(t) − �ρ − �r2]}

]
. (14)
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In the closure approximation the solution of Eq. (9) takes the
form

|�−
f (t)〉 = e−iĤ0t |C(t)〉 = e−iĤ0t e[(i/vp)f (t)]eiĤ0t |C(∞)〉

≈ e[(i/vp)f (t)]|C(∞)〉. (15)

The matrix element (11) reads now (we returned to zR = vpt)

Tf i ≈
√

2
∫

d3Re−i �R·�q
∫

d3ρei �ρ·�vp ϕ0(ρ)
∫

d3r2φ
−∗
α (�r2)

× e[−(i/vp)f ( �R, �ρ,�r2)]

[
− 1

ρ
− 1

| �R − �r2|
+ 2

R

]

×�0( �R − �ρ,�r2). (16)

It is interesting to note that the closure approximation in this
approach does not contain a fitting parameter, which is a
typical feature of the second-order Born theory.

If we neglect the distorting term exp [−(i/vp)f ( �R, �ρ,�r2)]
in Eq. (16), i.e., replace it by 1, the plane-wave first-order
Born approximation (PWFBA) follows. The corresponding
9D integral can be reduced now to 3D [for details, see [22];
also Eq. (20) below].

We can slightly simplify the 9D integral in Eq. (16) in the
case of the CT reaction [φ−

α (�r2) ≡ φ0(�r2)]. First, we consider
the simplest helium ground-state wave function; it is the
Hylleraas one

�0(�r1,�r2) ≈ �Hy(r1)�Hy(r2),
(17)

�Hy(r) =
√

Z3

π
e−Zr , Z = 27/16.

It was noted in our previous investigation that any helium
trial wave function gives the same angular distribution in the
vicinity of the main peak (see [22], Fig. 3) for CT reactions.

Second, at large vp,q, only small values of (ρ,R) ∼ 1/vp

contribute to the integral (16) because of the highly oscillating
integrands, in contrast to r2. Thus, one easily sees that if
ρ,R � r2, we can consider a model where the ion He+ stays
nonperturbed during the time of interaction, which is about
tint ≈ 2rHe/v

2
p. In this particular case,

Tf i =
√

2
∫

d3Re−i �R·�q
∫

d3ρei �ρ·�vp ϕ0(ρ) e[−(2i/vp)g( �R, �ρ)]

×
[
−a

ρ
− b + 2a

R

]
�Hy( �R − �ρ) (18)

with

a = 〈φ0|�Hy〉 = 8(2Z)3/2

(Z + 2)3
, b = 〈φ0| 1

r2
|�Hy〉 = 4(2Z)3/2

(Z + 2)2
,

and

g( �R, �ρ) = ln

[
[vp| �R − �ρ| + �vp · ( �R − �ρ)]

[vpR + �vp · �R]

]
.

Results of calculations of the 6D integral (18) (with and
without g) are presented in Figs. 9–11.

C. Closure approximation: Plane-wave second-order
Born approximation

The plane-wave second-order Born approximation
(PWSBA) obviously follows from Eq. (9). To write suitable
formulas we define ϕα( �ρ) as a spectral state of hydrogen and
φβ(�r2) as a spectral state of the He+ ion. A tilde indicates
these functions in momentum space. We also define the matrix
elements

Fβ(�ξ,�η) =
∫

d3r1d
3r2e

−i�ξ ·�r1e−i �η·�r2φ∗
β(�r2)�0(�r1,�r2) (19)

and partial amplitudes

Tαβ(�q − �x)

= −4π
√

2
∫

d3s

(2π )3

ϕ̃∗
α(�s)

(�vp − �q + �x − �s)2
[Fβ(�q − �x,0)

+Fβ(�vp − �s, −�vp + �q − �x + �s) − 2Fβ(�vp − �s,0)].

(20)

In these definitions T FBA
f i ≡ T00(�q).

We would like to make a few clarifications here. The
PWFBA consists of three terms. The first one is just
the plane-wave OBK term mentioned in the Introduction. The
third one includes the proton-nucleus interaction. Both these
terms describe the shake-off process in the target. The second
term in Eq. (20) describes the sequential interaction of the
proton with both target electrons, but it is still a first-order
Born term, because only one actual scattering intermediate
interaction is involved.

We omit intermediate computations and write the PWSBA
amplitude as T SBA

f i = (B1 + B2 + B3 + B4). The term B1 is
associated with the interaction Vp2 in the final state and is
equal to

B1 = −
∑

β

∫
d3x

(2π )3

4π

x2

〈φ0|e−i �x·�r2 |φβ〉
�vp · �x + (

εHe+
0 − εHe+

β

) + i0

× T0β(�q − �x).

It includes all intermediate excitations of the helium ion. The
term B2 is associated with the interaction VpN in the final state
and is equal to

B2 = 2
∫

d3x

(2π )3

4π

x2

1

�vp · �x + i0
T00(�q − �x).

The term B3 is associated with the interaction VN1 in the final
state:

B3 = −2
∑

α

∫
d3x

(2π )3

4π

x2

〈ϕ0|e−i �x· �ρ |ϕα〉
�vp · �x + (

εH
0 − εH

α

) + i0

× Tα0(�q − �x),

and includes intermediate excitations of the hydrogen atom.
Finally, the term B4 is associated with the interaction V12 in
the final state and is equal to

B4 =
∑
α,β

∫
d3x

(2π )3

4π

x2

〈ϕ0|e−i �x· �ρ |ϕα〉〈φ0|e−i �x·�r2 |φβ〉
�vp · �x + (

εH
0 − εH

α

) + (
εHe+

0 − εHe+
β

) + i0
Tαβ(�q − �x).
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All intermediate excitations of both helium ion and hydrogen atom are included here. We have to note that the sums (B2 + B3)
and (B1 + B4) compose nondivergent integrals at x ∼ 0.

Finally, Tf i ≈ T FBA
f i + T SBA

f i .
The PWSBA amplitude can be presented in the closure approximation:

T SBA
f i ≈ 1

2π2

∫
d3x

x2

{[P1(�x) + P4(�x)] + [P2(�x) + P3(�x)]}
�vp · �x − Ē + i0

. (21)

Here we again replace the whole spectrum of the operator Ĥ0 by an averaged energy Ē > 0. In Eq. (21)

P1(�x) = 4π
√

2
∫

d3s

(2π )3

ϕ̃∗
0 (s)

(�vp − �q + �x − �s)2
[F0(�q − �x,�x) + F0(�vp − �s, −�vp + �q + �s) − 2F0(�vp − �s,�x)];

P2(�x) = −8π
√

2
∫

d3s

(2π )3

ϕ̃∗
0 (s)

(�vp − �q + �x − �s)2
[F0(�q − �x,0) + F0(�vp − �s, −�vp + �q − �x + �s) − 2F0(�vp − �s,0)];

P3(�x) = 8π
√

2
∫

d3s

(2π )3

ϕ̃∗
0 (s)

(�vp − �q − �s)2
[F0(�q − �x,0) + F0(�vp − �s − �x, −�vp + �q + �s) − 2F0(�vp − �s − �x,0)];

P4(�x) = −4π
√

2
∫

d3s

(2π )3

ϕ̃∗
0 (s)

(�vp − �q − �s)2
[F0(�q − �x,�x) + F0(�vp − �s − �x, −�vp + �q + �s + �x) − 2F0(�vp − �s − �x,�x)].

The results of calculations of the 6D integrals in Eq. (21) are
presented in Figs. 3–5. The method of Laplace transformation
(see [23] and Appendixes there) was used for the calculations.

IV. RESULTS AND DISCUSSION

With very good experimental momentum resolution we
were able to separate the different excitation processes that
can accompany electron transfer, encoded in the longitudinal
momentum. From the data and multiple Gaussian fits shown
in Fig. 2 we extracted the branching ratios, shown in Table I.
The general trend of decreasing excitation with increasing
projectile velocity follows the trend of earlier state-selective
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FIG. 3. (Color online) SDCS versus the scattering angle of the
final fast hydrogen atom. The projectile proton energy is Ep =
630 keV. Solid line, the PWFBA with Eq. (20); broken lines, the
PWSBA with Eq. (21) (long-dashed line, Ē = 0.1, short -dashed line,
Ē = 0.5, dotted line, Ē = 1; the tendency is clear). Both hydrogen
and the final helium ion are supposed to be in their ground states. The
experiment is normalized to the maximum of the PWFBA model.

measurements [24]. Furthermore it agrees well with the
intuitive picture that additional interactions become more
unlikely at higher projectile velocities.

The theory of capture processes and the main approxima-
tions were presented in the review paper of Belkić et al. [25]
more than 30 years ago, and this paper is still relevant in
spite of numerous modifications and improvements given later.
Three main theoretical options are available for fast projectile
particles: the time-dependent approach, the Born-Faddeev
series, and the plane-wave Born series. All of them are
connected, if the fast particle is not considered as the classical
source of the external time-dependent field. The Born-Faddeev
series immediately leads to distorted-wave considerations
because the two-body potential which appears in the diagrams
of the plane-wave Born series is replaced by the two-body
off-shell amplitude. To our knowledge, Alston was the first
who used this approach in numerical calculations (see, for
example, [23] and references within).
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FIG. 4. (Color online) As Fig. 3, but Ep = 1000 keV.
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FIG. 5. (Color online) As Fig. 3, but Ep = 1200 keV.

The distorted-wave approach leads to many speculations
and is mainly based on asymptotic considerations, while the
capture happens inside the target, i.e., large impact parameters
do not play any role [see (11)]. One can easily see from (13)
and (15) that logarithmic phases appear in Eq. (16), as is
typical for old theories, if we neglect any intermediate quantum
excitations of colliding components. In this respect, plane-
wave theories provide the most transparent physics.

It is quite clear now that the theoretical treatment of high-
energy capture processes is much more complicated than that
of direct scattering. As in electron momentum spectroscopy
(EMS) [26,27], the fast capture processes can be attributed to
scattering processes with two fast particles in the final state
(see also the review paper [28]). However, in contrast to EMS,
the PWFBA does not reproduce the experimental SDCSs. Only
the OBK term corresponds closely to the EMS amplitude, but
here the term which describes p-N interaction plays a crucial
role.

One can see in Figs. 3–5 that the experimental angular
distribution exhibits two well-pronounced domains: a sharp
peak at about θp ∼ 0.1 mrad and a rather flat structure above
0.4 mrad. The PWFBA result (solid line) is similar to this
structure, but the main peak is much too sharp, and the tail
after the minimum is about an order of magnitude bigger. It is
interesting to note here once more that the shape and absolute
value of the PWFBA theoretical curve do not depend much on

TABLE I. Experimental branching ratios for the electronic states
of the single-capture process [p + He → H0(n) + He+(n′)] for pro-
jectile energies of 630, 1000, and 1200 keV/u. n = 1, n′ = 1: electron
transfer without excitation; n � 2, n′ = 1: electron transfer into an
excited state of the projectile; n = 1, n′ � 2: electron transfer with
additional target excitation; n � 2, n′ � 2: electron transfer with
target and projectile excitation. The errors are statistical ones.

630 keV/u 1000 keV/u 1200 keV/u

n = 1, n′ = 1 (74.9 ± 0.1)% (76.5 ± 0.2)% (77.2 ± 0.2)%
n � 2, n′ = 1 (19.2 ± 0.1)% (16.3 ± 0.2)% (15.6 ± 0.2)%
n = 1, n′ � 2 (3.9 ± 0.2)% (4.7 ± 0.4)% (5.2 ± 0.3)%
n � 2, n′ � 2 (2.0 ± 0.2)% (2.5 ± 0.4)% (2.0 ± 0.3)%
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FIG. 6. (Color online) SDCS versus the scattering angle of the
final fast hydrogen atom. The projectile proton energy is Ep =
630 keV (same data as in Fig. 3). Solid line, the Thomas peak
contribution only with the term B3; dotted line, the PWFBA; dashed
line, the PWSBA with Ē = 0.1. Both hydrogen and the final helium
ion are supposed to be in their ground states. The experiment is
normalized to the maximum of the PWFBA model.

the correlation structure of the trial helium ground-state wave
function and are defined mainly by its 1s2 part. On the basis
of this last observation the total cross section (TCS) of the
reaction considered here was calculated with the PWFBA, and
the result above Ep = 500 keV unexpectedly gave rather good
coincidence with the experiment [29]. The reason is quite clear;
it is because the main peak is sharp, and the angular region
0–0.2 mrad gives the principal contribution to the TCS. That
is why we can normalize the corresponding experiment to the
peak value of the PWFBA distribution, because in such a way
we normalize it to the TCS.

The plane-wave OBK term reproduces much better the
shape of the main peak, but it is about three times higher
than the PWFBA peak, and the TCS calculated with only the
OBK term noticeably exceeds the experimental value. And of
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FIG. 7. (Color online) As Fig. 6, but Ep = 1000 keV (same data
as in Fig. 4).
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FIG. 8. (Color online) As Fig. 6, but Ep = 1200 keV (same data
as in Fig. 5).

course the OBK term exhibits no plateau. Consequently, the
p−N interaction plays a very important role, as was discussed
earlier.

If the PWFBA (mainly the OBK term + p-N ) reproduces
the domain of kinematic capture (θp ∼ 0.1 mrad), the recol-
lision processes must play an important role in the region of
the plateau and also increase the width of the main peak. Let
us analyze more carefully the role of the p-N term. The fast
projectile proton meets the nucleus and is slightly deflected
from its straight path. The scattering angle depends on the
impact parameter and can be easily calculated from classical
considerations. Then this proton captures the electron directly
by means of the secondary OBK mechanism, but now the
momentum transfer is slightly shifted compare to pure OBK
capture. The sum of these two amplitudes allows the peak
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FIG. 9. (Color online) SDCS versus the scattering angle of the
final fast hydrogen atom. The projectile proton energy is Ep =
630 keV (same data as in Fig. 3). Solid line, the DWBA with Eq. (18);
dashed line, the PWFBA with Eq. (20); dotted line, the modified
PWFBA with Eq. (18) where g = 0. Both hydrogen and the final
helium ion are supposed to be in their ground states. The experiment
is normalized to the maximum of the PWFBA model.
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FIG. 10. (Color online) As Fig. 9, but Ep = 1000 keV (same data
as in Fig. 4).

width to be enlarged up to the experimental value (θp � 0.4
mrad) without any noticeable change in its height, but this
mechanism does not explain the plateau.

The PWSBA terms contain summation and integration over
the intermediate spectra of the hydrogen atom and He+ ion
(terms B1–B4). This is an impossibly complicated task even
for supercomputers, and we have to make further approxi-
mations. One of them is the so-called closure approximation,
introduced many years ago in nuclear physics. We suppose
that in fast collisions all the principal intermediate states are
excited with equal probability, which allows us to replace their
eigenenergies by an averaged energy, which plays the role of
a fitting parameter. These considerations give more or less
reasonable results in many cases of fast scattering processes.
The results of such calculations with the wave function (17)
are presented in Figs. 3–5 (dashed lines). We actually see that
the SBA theory results move toward the experimental values,
expanding the main peak without changing its height and
approaching the plateau from below. But some details cannot
be described satisfactorily. The strangest observation is that the
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FIG. 11. (Color online) As Fig. 9, but Ep = 1200 keV (same data
as in Fig. 5).
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best fit is reached for Ē ∼ 0. This means that the “averaged
energy” is close to the ground-state intermediate energies of
the hydrogen atom and helium ion, i.e., they essentially are not
excited in the intermediate state.

This conclusion is in serious contradiction with the proposal
that the Thomas mechanism plays a leading role in formation
of the plateau (θp � 0.4 mrad), where the continuum part of the
hydrogen spectrum mainly contributes (the term B3). Here for
the estimations we set ϕα = exp(i �p · �ρ), i.e., a plane wave,
εH
α = p2/2, and the summation is replaced by integration,

d3p/(2π )3. The results of the calculations are presented in
Figs. 6–8. The tendency to approach the experimental results
is seen, but for the proton energies under consideration the
results of the calculations are rather far from the experimental
values. Perhaps taking into account Coulomb waves instead of
plane waves can improve the results, but that is a future project.

Let us go back now to the integral (11). The best solution
is to calculate the time-dependent Schrödinger equation) (8)
numerically, and then the 9D integral (11). This problem has
not yet been solved, and we limited ourselves to the model
described above with the distorted-wave Born approximation
(DWBA) closure approximation. This model has two specific
features: (1) it includes no fitting parameters like the averaged
energy (the corresponding exponents cancel each other), and
(2) the intermediate helium ion stays in its ground state during
the fast collision process. The results of the calculations are
presented in Figs. 9–11. We see the tendency of the modified
PWFBA to move toward the PWFBA results with an increase

of energy, but this model of the DWBA with a nonperturbed
intermediate ion does not work. Perhaps we can improve the
results by considering the 9D integral with the full eikonal
(14), but this project is also for the future.

V. CONCLUSIONS

In conclusion, we have presented a systematic study of
electron transfer in the most fundamental collision system
p-He at rather high impact energies (Ep = 630, 1000, and
1200 keV). We have been able to separate the pure transfer pro-
cess from additional excitation contributions, which account
for up to 25% of the total electron-capture cross section. We
have considered a few models for the theoretical description of
the fast reaction p + He → H(n = 1) + He+(n′ = 1), namely,
the PWFBA, the PWSBA with closure, and the DWBA with
closure. At present, the PWSBA model provides the best
fit to the experiment but many physical questions remain
open.
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