Electronic correlations play a decisive role in the formation of the electronic structure and properties of atoms, molecules, and condensed matter. They also govern electronic processes such as photoexcitation or photoionization and the subsequent electronic decay. The simplest electronic process where electron correlations play an essential role is double photoionization of helium, which has for this reason been studied intensively by many researchers (see, for example, [1,2] and references therein.) Further clear evidence of electron correlations is the appearance of correlation satellites in photoelectron spectra; they appear as a signature of two-electron transitions accompanying a double photoionization of helium, which has for this reason been studied intensively by many researchers (see, for example, [1,2] and references therein.) Correlation satellites in molecular photoelectron spectra also provide valuable information about electron correlations in molecules [4,5]. However, the role of electron correlations in the molecular photoionization process has not been explored experimentally in as much detail as the corresponding processes in helium and other atoms. In the present work, we aim to elucidate the role of electron correlations in molecular photoionization. For this purpose, we investigate the molecular-frame photoelectron angular distribution (MFPAD) of a correlation satellite.

When considering molecular photoionization, the most natural reference frame is the molecular frame. The MFPADs for linear molecules can be realized by angle-resolved photoelectron-photoion coincidence measurements [6]. With the advent of position sensitive detectors, the measurement of MFPADs has become a standard procedure in molecular photoionization studies [7–14]. However, the measurements of MFPADs have so far been performed exclusively on the intense photoelectron mainlines.

We preface our discussion of correlation satellites with their phenomenological classification as well as classification based on satellite excitation mechanism. The satellites can be classified phenomenologically into two groups [15]. The first group includes satellites whose excitation cross sections relative to the single-hole ionization cross section stay relatively constant (the “normal” satellites), while the second group includes those satellites whose relative excitation cross sections sharply decrease with increasing photon energy (the “conjugate” satellites). These features are also seen in correlation satellites in molecular photoelectron spectra [16–19]. The different energy dependence for the normal and conjugate satellites stems from the fact that the final ionic states of the normal satellites have the same global quantum numbers as the mainline single-hole state, while those of conjugate satellites are different. For the K-shell photoionization of closed shell molecules with which we are concerned here, the angular momentum of the absorbed photon is carried away by the ejected electron both for the mainline and the normal satellites and is retained by the remaining ion for the conjugate satellites.

An alternative perspective is provided by a classification of correlation satellites based on the different lowest order diagrams of the many-body perturbation theory (MBPT) [3], as often discussed also for atomic double photoionization [2,20,21]. One of the two relevant contributions is termed “shake-up” while the other is termed “internal inelastic scattering” [3] or “two-step-one” (TS1)
The shake-up mechanism predominantly causes monopole excitation for the normal satellites and monopole ionization for the conjugate satellites. Replacement of the two-electron integral for the shake-up (in MBPT) by the overlap integral is known as the “shake-up model” [3,16,17]. It is worth noting that the monopole ionization term (conjugate shake-up term), also appears in the normal satellites and causes interference with the “direct (monopole excitation) term” [17]. In the internal inelastic scattering mechanism, on the other hand, multipole excitation becomes probable. Similarly to the shake-up mechanism, both normal and conjugate satellites may be excited by internal inelastic scattering. Thus, we have in total four different groups of correlation satellites, normal and conjugate satellites excited by shake-up and normal and conjugate satellites excited by internal inelastic scattering.

Normal and conjugate satellites excited by shake-up have previously been investigated in molecular photoionization both experimentally and theoretically (within the shake-up model) [16–19]. In these works the internal inelastic scattering mechanism was neglected. De Fanis et al. [22] and Hoshino et al. [23] on the other hand, suggest that internal inelastic scattering may also play a role in satellite excitation in molecules. The best way to investigate the mechanisms of the satellite excitation is to measure the MFPADs, since in this way one can probe not only the transition symmetry, i.e., which direction the transition symmetry of the molecular axis and the E vector [31]. Since we use all the data points to obtain only four 1D functions by this method, the statistics in the data analysis are far improved compared to the conventional approach where the reaction plane is predefined [12]. This improvement has allowed us to extract the MFPAD for the weak satellite with good statistics.

The ground state electron configuration of CO$_2$ is

$$1\sigma_g^2 1\sigma_u^2 2\sigma_u^2 3\sigma_u^2 2\sigma_u^4 4\sigma_u^2 3\sigma_u^2 1\pi_u^4 1\pi_g^2;$$

$$2\pi_u^0 5\pi_u^0 4\pi_u^0 X^1\Sigma^+,$$

where $1\sigma_g$ and $1\sigma_u$ denote O 1$s$ core orbitals and $2\sigma_g$ denotes C 1$s$. The highest occupied molecular orbital (HOMO) is the O $2p$ lone-pair orbital. In the C $K$-shell absorption spectrum of CO$_2$, one can see one sharp strong resonance corresponding to promotion of the $2\sigma_g$ electron to the lowest unoccupied molecular orbital (LUMO) $2\pi_u$ below the C 1$s$ ionization threshold, and one broad resonance corresponding to $2\sigma_g \rightarrow 4\sigma_u^*$ promotion above the threshold. The latter is the shape resonance. A promotion of the $2\sigma_g$ electron to $5\sigma_u^*$ is dipole forbidden. The photon energy employed in the present experiment corresponds to the $2\sigma_g \rightarrow 4\sigma_u^*$ shape resonance.

Figure 1 shows an electron spectrum recorded at a photon energy of 311.8 eV, i.e., ~14.2 eV above the C 1$s$ threshold at 297.63 eV [32]. Besides the mainline we can see the satellite at a binding energy of ~11.5 eV relative to the mainline. This satellite band corresponds to the overlapping bands S1 and S4, assigned, respectively, to normal and conjugate satellites by Schmdibauer et al. [24], based on the photon energy dependence of the excitation cross sections. In order to determine the MFPADs of the

![FIG. 1 (color online). C 1$s$ photoelectron spectrum of CO$_2$ recorded at 311.8 eV.](023001-2)
Let us first consider the C 1s mainline and the unresolved satellite bands, shown in Figs. 2(a) and 2(b), we select the reaction geometry such that the electron is emitted in the plane defined by the molecular axis and the E vector. In both cases, the electron emission is enhanced when the molecule is aligned along the E vector (θ_n ~ 0° and ~180°). The three-dimensional MFPADs for the mainline and the satellite band are shown in Figs. 3(a) and 3(b), where the E vector is parallel to the molecular axis (θ_n = 0°).

Let us now focus on the satellite with the intent of assigning it to one of the four types described in the introduction. From Fig. 2(b) it is clear that the satellite photoemission is enhanced when the molecule is aligned along the E vector, revealing the predominance of the Σ_g → Σ_u parallel transition, as in the case of the mainline. Thus the global quantum number of the continuum state that consists of the ion and the photoelectron is Σ_u. If it was a normal satellite, then the global quantum number of the ion state would be 2Σ^+g because the mainline (single-hole) state is 2Σ^−g. Then, the detected electron would be 1Σ^−g giving a node at θ = 90° in the MFPAD, as for the mainline. However, the MFPAD for the satellite clearly shows maximum intensity at θ = 90° [Figs. 2(b) and 3(b)]. Thus the observed satellite is predominantly a conjugate satellite, as Schmidbauer et al. suggested for the S4 band [24]. The electron emission parallel to the molecular axis seen in Figs. 2(b) and 3(b) may reflect the contribution from the normal satellite S1.

Next we turn to the question of the excitation mechanism. For a conjugate satellite excited by shake-up (within the shake model), the dipole excitation of the core electron to an unoccupied molecular orbital (bound-bound dipole integral) is accompanied by the monopole ionization of the valence electron (bound-free overlap integral). If the observed C 1s (2σ_g) satellite is caused by this conjugate shake-up term, the 2σ_g electron is promoted to the LUMO 2π_u via dipole excitation (since this transition moment is by far larger than any other), and one valence electron is shaken off via the monopole transition. In this case, the photoexcitation is a Σ_g → Π_u perpendicular transition. However, as already noted, the satellite excitation is enhanced by the Σ_g → Σ_u parallel transition. Thus the observed conjugate satellite is not excited by shake-up.

Let us now examine whether the observed satellite is consistent with the prediction for internal inelastic scattering. In this scenario, the photoelectron interacts with the valence electron and exchanges momentum. Schmidbauer et al. [24] suggest an assignment of 2σ_g→ 1π_u→ 2π_uΣ_g or Δ_g for the S4 conjugate satellite. Our observation rejects this assignment because one cannot construct a Σ_u continuum state adding a photoelectron that has a maximum intensity distribution at θ = 90° to the ion. An alternative plausible assignment is 2σ_g→ 1π_u→ 2π_uΣ_g. Adding a σ_g photoelectron to this ion, it is possible to construct a Σ_u continuum state. The observed MFPAD shown in Figs. 2(b) and 3(b) agrees with the σ_g symmetry. Also, internal inelastic scattering between the photoelectron and the valence electron in a π_u HOMO with O 2p lone-pair character is expected to be enhanced when the initial

---

FIG. 2 (color online). 2D plots of MFPADs for (a) the C 1s main line and (b) the lowest satellite of CO_2 recorded at photon energy of 311.8 eV. The x axis denotes the angle θ_n between the E vector and molecular axis, and the y axis the electron emission polar angle θ relative to the molecular axis. The electron emission intensity is plotted on a gray linear scale (color scale). These distributions have not been directly measured, but reconstructed from a parametrization of all available MFPADs for various molecular orientations. See text for details.

FIG. 3 (color online). 3D plots of MFPADs for (a) the C 1s main line and (b) the lowest satellite of CO_2 recorded at photon energy of 311.8 eV, where the E vector is parallel to the molecular axis. These distributions have not been directly measured but instead have been reconstructed from a parametrization of all available MFPADs for various molecular orientations. See text for the details.
photoelectron current ejected from the central C is towards the O atom, i.e., for the $\Sigma_g \rightarrow \Sigma_u$ parallel transition. Thus, all of our observations, i.e., that the satellite emission intensity is highest for a parallel transition and that the satellite MFPAD is peaked perpendicular to the molecular axis, strongly support classification as a conjugate satellite excited by internal inelastic scattering, with the assignment of the remaining ion $2\pi_u^{-1} 1\pi_u^{-1} 2\pi_u^*$.

It is worth noting that, while the mainline MFPAD [Fig. 2(a)] changes dramatically with the excitation angle $\theta_n$, the shape of the satellite MFPAD [Fig. 2(b)] is more or less constant, with only the total intensity changing with $\theta_n$. Such a total “loss of memory” of the photoelectron emission direction in the satellite production is also consistent with classification as a conjugate satellite excited by internal inelastic scattering. As noted above, the photoelectron collides with the O atom, i.e., for the $1s$ photoline of the molecule C, the photoelectron loses energy and appears as a satellite photoelectron emission direction and parity. We note that the present interpretation has been made within the dipole approximation. Further refined theoretical studies are desired in the future.

This experiment was carried out with the approval of JASRI and supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS). The authors are grateful to A. Grum-Grzhimailo and M. Ebara for discussion and J. Harries for critical reading. X. J. L. and A. D. acknowledge financial support from JSPS. A. C. and R. D. acknowledge support by DFG.

*Corresponding author.
ueda@tagen.tohoku.ac.jp