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Figure 3.8: Heisenberg’s microscope.

This is the famous Heisenberg uncertainty principle, first proposed by Werner Heisenberg in
1927. According to this principle, it is impossible to simultaneously measure the position

and momentum of a particle (exactly). Indeed, a good knowledge of the particle’s position
implies a poor knowledge of its momentum, and vice versa. Note that the uncertainty
principle is a direct consequence of representing particles as waves.




Robertson 1929
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AAAB > J|(WI[A, Bllv)

The AA, AB were identified with the
uncertainties of Heisenberg's
simultaneous measurement

AA = [(A%) — (4)*]V/7

IS a statistical property of an ensemble of
Identical systems



Uncertainty relation pairs

Ap, Ax
AJ, Ap

AFE, At Fourier transform, no time operator

Imaging Theorem, Quantum to “classical” transition

U(x,t) > V(x(t)) ~ qf(p, t)
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The Generalised Imaging
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Integral in Stationary Phase Approximation

Free motion, one dimension
2
2m

Stationary phase point
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Einstein 1927

Indeed, if the particle is spread out in space before being detected,
the fact that it is always detected at a

given point implies that it condenses itself
on that point and that its presence vanishes elsewhere.
Thus something nonlocal must be taking place.

Einstein adds:

In my opinion, one can remove this objection
[action at a distance] only in the following way,
that one does not describe the process

solely by the Schrodinger wave,

but that at the same time one localises

the particle during the propagation.

ImagingTheorem !



Spreading Free Gaussian Wavepacket
and the Quantum to Classical Transition




Expanding
Coordinate Space {g.,qy}
q=r/f

Momentum Space {p.,p,}

t=1 a.u

t=50 a.u.

t=500 a.u.
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Molecular Physics ed G Ogurtsov and D Dowek (Oak
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Propagation in Time and Space
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At infinitely large time

me g

pV(x,t) = (x,t) = pY(x,1t)

The space wave function is an eigenfunction
of the momentum operator.

At finitely large time
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can be made much smaller than h,



Expanding wave packet
and the quantum to classical transition

Expanding wave packet
and the wave to beam optics transition
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Gaussian beam
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Helmholtz Equation = TISE

The paraxial approximation of Optics
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Lab. frame. Light or particle diffraction through 4 Gaussian slits.

d =35, sigma=0.5




Space-Time Transformation of Free Motion

K2 92 O
< 0
om o2~ Mgy =Y

oz oty
v = a(t) t:/ a(t/)z

with the Bohmian choice
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with constant frequency wo=1/T

In the co-moving frame
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Along the complete co-moving trajectory the space
wave function is proportional to the momentum wave

function (Fraunhofer limit)




What is the new time in the energy phase

factor ?

_ | 1
E.t/h=(n+ =)t/T = (n+ 5) arctan 7

T =t/T = arctanT = arctan (¢t/T)

The proper time in the co-moving frame is the Gouy phase !

Lab. time t/T from Zero to oo

Co — moving time t/T from Zero to m/2



Expand an arbitrary wave packet

X(Z,7) =) an®u(xo,7) T=t/T

A displaced Gaussian slit function
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a coherent state




Coherent states, no interference, co-moving frame
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Lab. frame



Lab. frame, 4 Gaussian slits

d =35, sigma=0.5




Co-moving frame, 4 coherent states

No interference
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With interference
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Wave function of the Universe
J. B. Hartle and S. W. Hawking

Phys. Rev. D 28, 2960 — Published 15 December, 1983

Hubble “constant”
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