Attosecond Physics and the Dream of an Electron Movie

Eva Lindroth

Stockholm University

Heraeus Seminar Steinbach 1-4 September 2025

TO RESOLVE FAST DYNAMICS

High Speed Camera $\sim 1000~\text{fps}$

We need a fast camera!

HOW TO FOLLOW CHEMICAL REACTIONS IN TIME

Direct Observation of Transition States. Once a Holy Grail of Chemistry

- Zeweil 1994
- Intermediate state $\tau \sim 700 \text{ fs}$

- Femtosecond laser pulses.
 Infrared light.
- $\Delta t = 10 100 \text{ fs}$

ELECTRON DYNAMICS HAPPENS ON THE ATTOSECOND TIME SCALE

• The "orbit time" in the Bohr model is 150 as $(1 \text{ as} = 10^{-18} \text{ s})$

Simulation of charge migration in a bromobenzene molecule. From Folorunso et al. Phys Chem A. 2023

HIGH HARMONIC GENERATION

- M Ferray A L'Huillier et al J. Phys. B 21 L31 (1988)
- $\hbar\Omega_{XUV} = (2n+1)\hbar\omega_{IR}$
- ullet train of XUV-pulses, ~ 100 as

TO BE BOTH A PARTICLE AND A WAVE

All matter has both particle and wave properties

Atoms in chemical reactions are mostly particle-like

Electrons around atoms and molecules are mostly wave-like

TIME IN QUANTUM MECHANICS?

There is no time operator. Wolfgang Pauli 1933: We conclude that the introduction of an operator T must fundamentally be abandoned and that the time in quantum mechanics has to be regarded as an ordinary number

Time in Quantum Mechanics?

There is no time operator. Wolfgang Pauli 1933: We conclude that the introduction of an operator T must fundamentally be abandoned and that the time in quantum mechanics has to be regarded as an ordinary number

canonical commutation relation

$$[\hat{x}, \hat{p}_x] = i\hbar \rightarrow \Delta x \Delta p_x \ge \hbar/2$$

• \hat{x} and \hat{p}_x have both spectra $-\infty \to \infty$

• similar for time and energy?

$$\Delta t \Delta E \geq \hbar/2 \rightarrow \left[\hat{t}, \hat{H}\right] = i\hbar$$
??

- But what would then \hat{t} be?
- a physically realistic Hamiltonian must be bounded from below!

TIME IN QUANTUM MECHANICS?

There is no time operator. Wolfgang Pauli 1933: We conclude that the introduction of an operator T must fundamentally be abandoned and that the time in quantum mechanics has to be regarded as an ordinary number

- no self-adjoint time operator conjugate to a general H
- $t \neq -i\hbar \frac{\partial}{\partial E}$

STILL WE WANT TO TALK ABOUT TIME!

- life time $\Delta E \Delta t \geq \hbar/2$
- tunneling time?
- arrivial time
- delay time

Delay: Classic and Quantum

Classical Picture

$$\tau = \int \left(\frac{1}{v(x)} - \frac{1}{v_0}\right) dx$$

Classical Picture

$$\tau = \int \left(\frac{1}{v(x)} - \frac{1}{v_0}\right) dx$$

Quantum Picture

Classical Picture

$$\tau = \int \left(\frac{1}{v(x)} - \frac{1}{v_0}\right) dx$$

Quantum Picture

$$\eta = \int \left(k\left(x\right) - k_{0}\right) dx$$

Quantum Picture

$$\eta = \int \left(k \left(x \right) - k_0 \right) dx$$

Accumulated Phase Diff.

$$\tau = \hbar \frac{\partial \eta}{\partial E}$$

Eisenbud -48 Wigner -55 Smith -60

Quantum Picture

$$\eta = \int \left(k\left(x\right) - k_{0}\right) dx$$

$$=\frac{1}{\hbar}\int\left(\sqrt{2mE-V(x)}-\sqrt{2mE}\right)dx$$

Phase shift derivative

$$\tau = \hbar \frac{\partial \eta}{\partial E}$$

$$=\frac{m}{\hbar}\int\left(\frac{1}{k\left(x\right)}-\frac{1}{k_{0}}\right)dx$$

Classical Picture

$$\tau = \int \left(\frac{1}{v(x)} - \frac{1}{v_0}\right) dx$$

Quantum Picture

$$\tau = \int \left(\frac{1}{v(x)} - \frac{1}{v_0}\right) dx \qquad \qquad \tau = \hbar \frac{\partial \eta}{\partial E} = \frac{m}{\hbar} \int \left(\frac{1}{k(x)} - \frac{1}{k_0}\right) dx$$

Photoionization is scattering from within!

- Schultze et al. Science 328. 1658, (2010)
- one point: $\hbar\omega=106$ eV.
- \bullet e^- from 2s, 21 \pm 5 as ahead

Photoelectron Energy[eV]

Klünder et al PRL 106.

143002 (2011)

Photoelectron Energy[eV]

Rabbit

Laser-assisted photoionization - RABBIT

Resolution of Attosecond Beating By Interference of Two-photon Transitions

- Wigner delay theoretical concept
- Atomic delay measurable quantity

Laser-induced sideband signal:

$$P \sim \mid M_{abs\,\omega} + M_{emi\,\omega}\mid^2 \sim A + B\cos[2\omega(\tau - \tau_{\rm GD}) - \frac{\eta_{
m Atom}}{\eta_{
m Atom}}],$$

where $\tau_{\rm GD} pprox (\phi_> - \phi_<)/2\omega$ is group delay of attopulse

RABBIT - PHASE

- The experiments do not measure the Wigner phase
- they measure the difference between the emission and absorption path.

RABBIT -Delay, $\sim d\eta/dE$

Measured delay different from fundamental Wigner delay!

THE DIFFERENCE: ABOVE THRESHOLD IONIZATION

Continuum-Continuum transitions

Rather Universal Contribution

Vinbladh et al. Atoms 2022, 10, 80

• but of course more complicated when you go into details

Isinger et al Science **358** 893 2017 (Spectral resolution giving by the sharpness of the comb teeth)

WHAT WAS NEEDED FROM THEORY?

After 50+ years with photoionization we know that ...

Argon 3s photoionization, Exp. Möbus et al. Phys. Rev. A 47, 3888 (1993)

... one particle models, as Hartree Fock, are insufficient!

WHAT WAS NEEDED FROM THEORY?

AFTER 50+ YEARS WITH PHOTOIONIZATION WE KNOW THAT...

Argon 3s photoionization, Exp. Möbus et al. Phys. Rev. A 47, 3888 (1993)

.. adding single excitations, CI singles/RPAE forward, is often not enough.

WHAT WAS NEEDED FROM THEORY?

After 50+ years with photoionization we know that...

Argon 3s photoionization, Exp. Möbus et al. Phys. Rev. A 47, 3888 (1993)

.. RPAE, however, gets the cross section more or less right!

NEXT STEP

- Neon well understood
- What about something slightly more complicated like Argon?

NEXT STEP

- Neon well understood
- What about something slightly more complicated like Argon?

Channels coupling induced Cross Section minimum in Ar 3s ionization

Cooper minimum in Argon 3p ionization

when the matrix element $\langle k \mid \mathbf{r} \mid a \rangle$ change sign:

1.0 0.5 Ψ 0.0 -0.5 -1.0 0 2 4 6 8 10 r[a.u.]

Ar 3p and photoelectron ~ 10 eV

Ar 3p and photoelectron $\sim 40 \text{ eV}$

- vanishing matrix element for certain photoelectron energy
- Strong 3s/3p channel coupling

THE ARGON PROBLEM

Experiment from Lund & Saclay. Theory (RPAE)

 Alexandridi et al Phys. Rev. Res. 3, L012012 (2021)

The Argon Problem

Experiment from Lund & Saclay. Theory (RPAE)

 Alexandridi et al Phys. Rev. Res. 3, L012012 (2021)

- Theory: enormous delay where there are hardly any electrons.
- Shake-up channels, e.g. $\left(\left\{3p^{-2}\right\}^{1}D3d\right)^{2}S$, are also open. Is it these that are measured?

IS THE DELAY POSITIVE OR NEGATIVE?

- Recent results from Sizuo Luo et al, Jilin University
- Improved spectral accuracy (100 meV) resolve shake-up channels
- The delay is indeed negative.
- What has theory missed?

Back to the cross section

- Recent results from Sizuo Luo,
- Improved spectral accuracy (100 meV) resolve shake-up channels
- The delay is indeed negative.
- What has theory missed?

Back to the cross section

- Recent results from Sizuo Luo,
- Improved spectral accuracy (100 meV) resolve shake-up channels
- The delay is indeed negative.
- What has theory missed?

Back to the cross section

- Recent results from Sizuo Luo,
- Improved spectral accuracy (100 meV) resolve shake-up channels
- The delay is indeed negative.
- What has theory missed?
- Shake-up type correlation?
- q-value a phase-dependent property!

BACK TO THE COOPER MINIMUM

- NOW INCLUDING SHAKE-UP TYPE CORRELATION

just slightly affected

BACK TO THE COOPER MINIMUM

- NOW INCLUDING SHAKE-UP TYPE CORRELATION

- just slightly affected
- Phase (Delay) sometimes a very sensitive probe!

- drastically affected
 - Experiment led by Sizuo Luo, Jilin University et al

Why is the phase more sensitive?

$$z = z_0 + \delta z$$

 $z_0: 3s \rightarrow \epsilon p$

 δz through correlation with 3p

$$z = \mid z_0 \mid e^{i\phi} \left(1 + \frac{\mid \delta z \mid}{\mid z_0 \mid} e^{i\Delta\phi} \right)$$

$$|z|^2 = |z_0|^2 \left(1 + \frac{|\delta z|^2}{|z_0|^2} + 2\frac{|\delta z|}{|z_0|}\cos(\Delta\phi)\right)$$

Amplitude (cross section) insensitive to the sign of $\Delta \phi!$

SENSITIVE PROBE OF MOLECULAR ENVIRONMENT

Ionization delay relative Ne [as]

Electron kinetic energy[eV]

 Delay of I 4d-electron ionization of C₃H₇I, from Menezes Ferreira et al Abstract to Atto X 2025

Phase and potential

Outgoing wave: $r \to \infty$. $\rho(r) \sim e^{ikr}$

Phase and potential

Outgoing wave: $r \to \infty$. $\rho(r) \sim e^{ikr}$

$$\frac{d}{dr}\arg\left(\rho\right)=k(r)$$

$$E = \frac{k^2(r)}{2m} + V(r)$$

Phase and potential

Outgoing wave: $r \to \infty$. $\rho(r) \sim e^{ikr}$

$$\frac{d}{dr}\arg\left(\rho\right)=k(r)$$

$$E = \frac{k^2(r)}{2m} + V(r)$$

FINAL REMARKS

- lonization delay is a sensitive tool to study the potential landscape
- Today used on a variety of system: molecules, surfaces, nanostructures...
- Both streaking and RABBIT are used.
- Recently also with X-ray pulses e.g. oxygen K-shell electrons in NO.

THANK YOU FOR LISTENING!

Acknowledgements:

Marcus Dahlström

Anne L'Huillier

 Long term collaboration with Marcus Dahlström and his group.

Leon Petersson

Sizuo Luo