X-ray photons: From information carriers to compact storage and nanoscale probing

Adriana Pálffy Julius-Maximilians-Universität Würzburg

841. WE-Heraeus Seminar Important Quantum Technologies

Incentives for x-ray quantum control

- Robustness, efficient detection
- Deeper penetration
- Focusing diffraction limit

Ultimate miniaturization of photonic circuits
 Sensing with unprecedented spatial resolution

Incentives for x-ray quantum control

- Robustness, efficient detection
- Deeper penetration
- Focusing diffraction limit

Ultimate miniaturization of photonic circuits
 Sensing with unprecedented spatial resolution

Vision

- Photonic devices (components that manipulate light) for x-rays, down to single photon
- X-ray control with unprecedented spatial and energy resolution

Challenges

So far insufficient control of x-ray photons

 Resonant transitions:
 X-rays are no longer resonant to atomic valence electron transitions

Temporal coherence:
 XFELs lack coherence properties of optical lasers

Cavities: Lack of high-finesse x-ray cavities

Highly reflective cavity Haroche group

Developments in x-ray quantum optics

- Use nuclear transitions resonant to x-ray photons
- Collective effects (superradiance) bring means of control
- Thin-film nanostructures with nm-thick nuclear layer(s)

thin-film x-ray cavities with embedded Fe layer(s)

resonant interaction of x-rays with Mössbauer nuclei – ⁵⁷Fe with 14.4 keV excitation

X-ray sources

Outline

I. X-ray thin film nanostructures

Collective effects and superradiant decay

II. Applications in cavity geometry (grazing incidence)

Storing a single x-ray photon
Playing ping-pong with a single x-ray photon
Dark states and topological effects

III. Applications in waveguide geometry (front coupling)

Front coupling theory and experiment

Outline

I. X-ray thin film nanostructures

Collective effects and superradiant decay

II. Applications in cavity geometry (grazing incidence)

Storing a single x-ray photon
Playing ping-pong with a single x-ray photon
Dark states and topological effects

III. Applications in waveguide geometry (front coupling)

Front coupling theory and experiment

Thin-film x-ray nanostructures

- Grazing incidence, detect reflectivity
- "resonant angle" from rocking curve
- Nuclear resonances interact with cavity field

Thin-film x-ray nanostructures

Setup at PETRA III, DESY, Hamburg

Number of excitations in the system

... Synchrotron radiation

~ 0.01 resonant photons/pulse

Single-photon collective effects

- Single photon superradiance
- Collective Lamb shift

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet and R. Rüffer, **Science 328, 1248 (2010)**

Single-photon, single-atom

Single-photon, multi-atom

Number of excitations in the system

... Synchrotron radiation

~ 0.01 resonant photons/pulse

Single-photon collective effects

- Single photon superradiance
- Collective Lamb shift

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet and R. Rüffer, **Science 328, 1248 (2010)**

... XFEL HXRSS radiation

Several 100 resonant photons/pulse

Multi-photon, multi-atom scattering

New phenomena!

- Photon correlations
- Nonlinear effects
- Entanglement, nonclassical states
- Collective effects (e.g. multiphoton collective Lamb shift)

Multiphoton nuclear resonant scattering

Number of excitations in the system

... Synchrotron radiation

~ 0.01 resonant photons/pulse

Single-photon collective effects

- Single photon superradiance
- Collective Lamb shift

R. Röhlsberger, K. Schlage, B. Sahoo, S. Couet and R. Rüffer, **Science 328, 1248 (2010)**

... XFEL HXRSS radiation

Several 100 resonant photons/pulse

Multi-photon, multi-atom scattering

New phenomena!

- Photon correlations
- Nonlinear effects
- Entanglement, nonclassical states
- Collective effects (e.g. multiphoton collective Lamb shift)

Multiphoton nuclear resonant scattering

Superradiant decay

- Cavity field excites radiative eigenmode
- \bullet χ is the coherent decay enhancement factor

The collective effects are our "control knob" on the system!

R. Röhlsberger et al, Science **328**, 1248 (2010)

Superradiant decay 10^{5} intensity (arb. units) 10 20 40 60 time after excitation (ns)

Dicke model

R. Dicke, Phys. Rev. 93, 99 (1954) $\lambda \gg d$

$$\lambda \gg d$$

theory

Superradiant decay increased by factor N!

N. Skribanowitz et al, Phys. Rev. Lett. 30, 309 (1973) experiment

Dicke model

Superradiant decay increased by factor N!

N. Skribanowitz et al, Phys. Rev. Lett. 30, 309 (1973) experiment

Thin-film x-ray cavities

Collective Lamb shift

The collective effects are our "control knob" on the system!

Superradiant decay

R. Röhlsberger et al, Science **328**, 1248 (2010)

Thin-film x-ray cavities

Collective Lamb shift

The collective effects are our "control knob" on the system!

Superradiant decay

R. Röhlsberger et al, Science **328**, 1248 (2010)

Outline

I. X-ray thin film nanostructures

Collective effects and superradiant decay

II. Applications in cavity geometry (grazing incidence)

Storing a single x-ray photon
Playing ping-pong with a single x-ray photon
Dark states and topological effects

III. Applications in waveguide geometry (front coupling)

Front coupling theory and experiment

1. Storing single x-ray photons

Switch off the coherent (superradiant) decay via magnetic switching

Thick targets, normal incidence
 Liao, Pálffy, Keitel, Phys. Rev. Lett. 109, 197403 (2012)

Thin-film cavities: stopping light mechanism Pulse mapped to nuclear coherences Kong and Pálffy, Phys. Rev. Lett. 116, 197402 (2016)

"strong coupling" with x-rays

"strong coupling" with x-rays

"strong coupling" with x-rays

"strong coupling" with x-rays

= many successful exchanges until ball lost

Control of inter-layer coupling

Experimental confirmation

The resonance line is split and one can observe Rabi oscillations as known from the strong coupling regime!

Haber, ... Pálffy*, Röhlsberger*, Nature Photon. **11**, 720 (2017)

Experimental confirmation

The resonance line is split and one can observe Rabi oscillations as known from the strong coupling regime!

Haber, ... Pálffy*, Röhlsberger*, Nature Photon. **11**, 720 (2017)

3. Dark states in many-layer structures

- Effective Jaynes-Cummings cavity QED Hamiltonian
- Strong-coupling regime via the dark-state field
- Effective photon-photon interaction, generation of non-classical states of light

Preparation: Green's function formalism *X. Kong, D. Chang, AP, PRA* **102**, 033710 (2020) *P. Andrejić, AP, PRA* **104**, 033702 (2021)

Experiment 3. Dark states in many-layer structures 100 102 80 Time [ns] 60 40 10^{-1} 20 Detector antinode Spring-8 node ⁵⁷Fe -150 -100 100 150 -50Detuning $[\Gamma_0]$ **Experiment** antinode Recovered Spectrum 14.4 keV 8.0 C Reflectivity (a.u.)

- Proof-of-principle for 3 layers
- Look for unequal couplings in generic 2N+1 layer systems

Preparation: Phase retrieval method *Z. Yuan, ..., AP, X. Kong, Nature Commun.* **16**, 3096 (2025)

0.0

-60

-40

-20

Detuning (Γ_0)

40

4. Topological effects in thin-film cavities

- 1D Su-Schrieffer-Heeger model
- Unequal couplings t and t'
- Excitation is "collected" at the lateral side of the sample – topological edge state

H. Zimmermann, J. Sturm. I. C. Fulga, J. van den Brink, AP, arXiv:2506.10588

Outline

I. X-ray thin film nanostructures

Collective effects and superradiant decay

II. Applications in cavity geometry (grazing incidence)

Storing a single x-ray photon
Playing ping-pong with a single x-ray photon
Dark states and topological effects

III. Applications in waveguide geometry (front coupling)

Front coupling theory and experiment

Waveguide geometry

Front coupling

- Less explored regime: waveguide propagation in thin film nanolayers
- Same system as grazing incidence, but same boundary condition as forward scattering!

P. Andrejić, L. Lohse, AP, Phys. Rev. A 109, 063702 (2024)

Front coupling experiment

Lohse, Andrejic, ..., AP, Salditt, Röhlsberger Phys. Rev. Lett. **135**, 053601 (2025)

Front coupling experiment

Lohse, Andrejic, ..., AP, Salditt, Röhlsberger Phys. Rev. Lett. **135**, 053601 (2025)

Shape of sample (top view)

Front coupling experiment

Lohse, Andrejic, ..., AP, Salditt, Röhlsberger Phys. Rev. Lett. **135**, 053601 (2025)

Front coupling experiment

Lohse, Andrejic, ..., AP, Salditt, Röhlsberger Phys. Rev. Lett. **135**, 053601 (2025)

- Features of both grazing incidence and nuclear forward scattering
- Guided modes as in grazing incidence, each behaving as in nuclear forward scattering
- Guided modes can have very long attenuation lengths, up to mm scale!

Conclusions

How to control of a single x-ray photon using Mössbauer nuclei:

- Exploiting collective effects (superradiance) and external magnetic fields
- Cavity QED effects in grazing incidence geometry
- Long attenuation lengths in waveguide geometry
- Combine front coupling and topology for spatial propagation in edge states

clean quantum optical system

cavity geometry

waveguide geometry

Conclusions

Photonic device

How to control of a single x-ray photon using Mössbauer nuclei:

- Exploiting collective effects (superradiance) and external magn
- Cavity QED effects in grazing incidence geometry
- Long attenuation lengths in waveguide geometry
- Combine front coupling and topology for spatial propagation in

- Control propagation
- Switches
- Stop and release
- Phase manipulation

cavity geometry

waveguide geometry

Thanks

Xiangjin Kong

Ralf Röhlsberger Leon Lohse Lars Bocklage Sven Velten Olaf Leupold

DFG

THANK YOU FOR YOUR ATTENTION!

TRR 306
QuCoLiMa
Quantum Cooperativity of Light and Matter

Thanks

Xiangjin Kong

Ralf Röhlsberger Leon Lohse Lars Bocklage Sven Velten Olaf Leupold

Jonathan Sturm Fabian Richter Andrejić Hanns Zimmermann

DFG

THANK YOU FOR YOUR ATTENTION!

TRR 306
QuCoLiMa
Quantum Cooperativity of Light and Matter

- Classical field description can't explain spontaneous decay
- Quantized field description introduces the vacuum infinite empty modes
- Interaction with vacuum modes explains spontaneous decay
- Many identical atoms interacting with the same vacuum?

2-level system

- Classical field description can't explain spontaneous decay
- Quantized field description introduces the vacuum infinite empty modes
- Interaction with vacuum modes explains spontaneous decay
- Many identical atoms interacting with the same vacuum?

- Classical field description can't explain spontaneous decay
- Quantized field description introduces the vacuum infinite empty modes
- Interaction with vacuum modes explains spontaneous decay
- Many identical atoms interacting with the same vacuum?

- Classical field description can't explain spontaneous decay
- Quantized field description introduces the vacuum infinite empty modes
- Interaction with vacuum modes explains spontaneous decay
- Many identical atoms interacting with the same vacuum?

- Classical field description can't explain spontaneous decay
- Quantized field description introduces the vacuum infinite empty modes
- Interaction with vacuum modes explains spontaneous decay
- Many identical atoms interacting with the same vacuum?

Total dipole moment operator $\hat{\vec{d}}=\hat{\vec{d}_1}+\hat{\vec{d}_2}$ invariant to transposition of atoms!

Exciting the ensemble

Exciting the ensemble

 $\lambda \ll d$

Extended sample, ???

12

Radiative eigenmodes

Can we have superradiance for extended samples?

$$\begin{vmatrix} 1 & |s\rangle = \frac{1}{\sqrt{2}}(|g_1e_2\rangle + |g_2e_1\rangle) \\ |a\rangle = \frac{1}{\sqrt{2}}(|g_1e_2\rangle - |g_2e_1\rangle) \end{vmatrix}$$

If the laser excites the radiative eigenmode, yes - geometry and couplings

Temporal dynamics of radiative eigenmode:

$$\dot{eta_0} = -(\gamma + \Gamma_N + i\mathcal{L}_N)eta_0$$
 superradiant decay rate probability amplitude "Collective Lamb shift"

"Collective Lamb shift"

M. O. Scully, Phys. Rev. Lett. 102, 143601 (2009)

Green function formalism

- can be used for any multilayer structure
- fully quantum quantized electromagnetic field
- Heisenberg eqs., input-output formalism
- Grazing incidence and front coupling

X. Kong, D. Chang, AP, PRA 102, 033710 (2020) P. Andrejić, AP, PRA 104, 033702 (2021)

$$J_{lm} = \sqrt{N_l N_m} \left(\mu_0 \omega_p^2 / \hbar \right) \mathbf{d}^* \cdot \text{Re} \left[\mathbf{G}_{1D} \left(z_l, z_m, \omega_p \right) \right] \cdot \mathbf{d}$$

$$\Gamma_{lm} = \sqrt{N_l N_m} \left(2\mu_0 \omega_p^2 / \hbar \right) \mathbf{d}^* \cdot \text{Im} \left[\mathbf{G}_{1D} \left(z_l, z_m, \omega_p \right) \right] \cdot \mathbf{d}$$

Spin-exchange - H Decay rate - \mathcal{L}

Multilevels and multilayers

- Interplay between PT-symmetry, inter-layer coupling and superradiance
- What explanation have the occurring features? EP?
- Engineer desired response based on precise layer positioning

Non-Hermitian skin effect

- 1D Su-Schrieffer-Heeger model with anisotropic coupling
- Unequal coupings t, $t+\delta$ and $t-\delta$
- Topological funneling of x-ray light

or inhomogeneous B field?

Weidemann, ..., Thomale, Szameit, Science 368, 311 (2020)

Overview of nanostructure zoo

Structure	X-ray pulse Fe Detector	X-ray pulse Detector Fe	X-ray pulse Fe F	X-ray pulse Fe Betector	Fe Probe
B = 0	Superradiance	EIT/ Autler-Townes	Dark state nonlinearity	SSH topology	Probing technique
$B \neq 0$	PT symmetry	interplay?	??	??	

New probing techniques

- Microscopical probe embedded in cavity
- Taylor field via inter-layer coupling
- Novel technique for quasielastic x-ray scattering
- monitoring protein or spin dynamics

Combine with HAXPES?
Pump-probe type of experiment using x-ray and photoelectron response?

Ideas for ongoing/future work

- Robust x-ray transport and propagation control based on PT symmetry concepts
- Can we implement true gain in more complex structures?
- Quantum approach to reconcile PT-symmetry and reservoir engineering concepts from quantum optics
- X-ray topological photonics
- Exploit non-linearities for non-classical states of x-ray light
- Structure design to harness superradiance, layer coupling and PT symmetry interplay
- Development of new material probing techniques with x-rays and electrons?

1. Non-Hermitian photonics

Schrödinger equation

Non-Hermitian Hamiltonian PT symmetry Real eigenstates

Electromagnetic wave propagation

Complex optical potential ε/μ PT symmetry Balanced gain - loss profile

- ullet Extends photonics to the entire 4D space of complex ϵ / μ
- New functionalities: lasing, beam propagation, secondary emission, topological features

First 2D PT-symmetric crystal

Kremer, et al. Nature Commun. 10, 435 (2019)

PT-symmetry with x-rays

- Thin-film cavity displays PT-symmetry or PT-broken symmetry according to B value
- At exceptional point system very sensitive to external control
- Spatial interface can control x-ray propagation!

PT-symmetry with x-rays

- Thin-film cavity displays PT-symmetry or PT-broken symmetry according to B value
- At exceptional point system very sensitive to external control
- Spatial interface can control x-ray propagation!

Proof of principle

Experimental data on ¹¹⁹Sn (November 2020) at PETRA III (P01)

- Extract the eigenvalues from energy or time spectra
- Proof existence of exceptional point

2D-spectra (time, energy) for several B values evaluating data happily ever after Recovery of energy spectra – phase retrieval *Z. Yuan et al., arXiv: 2204.06096*

Two-mode interference

P. Andrejić, L. Lohse, AP, arXiv: 2305.11647 (2023)

Two-mode interference

Combine spatial interference pattern with micropatterning

Sub-ensemble of even strips does not interact with sub-ensemble of odd strips! Search for non-trivial topology?

X-ray photonic devices for ...

- Robust x-ray transport and propagation control based on PT symmetry concepts
- Nanoscale x-ray lasing for space- and energy-resolved probing of matter

TP 1 TP 4 EP 4 EP 5

Miniaturized x-ray material probing

1D

More complicated layer structures

Develop new probing technique