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From the atomic to the nuclear clock

The nuclear clock promises:

• High accuracy (with laser cooled trapped ions)

• High stability (in the solid state as a laser Mössbauer system)

• High sensitivity to new physics (also to strong interaction) 



229Th

Chart of Nuclides: Energy of the first excited state

From: National Nuclear Data Center, Brookhaven National Laboratory 

magic nucleon numbers

closed shell, 

deeply bound ground state

Region of deformed nuclei with collective

rotational and vibrational motion;

partly chaotic in excited states.



R. Stroberg; APS/C. Cain

Nuclear structure:

The deformed shell model or Nilsson model

Collective motion of an elliptical core

combined with 

single-particle motion of an 

unpaired „valence“ nucleon  

(much faster than motion of the core)

  

Sven Gösta Nilsson

Not a complete description of the Th-229 transition:

 The proton distribution in the core would not change.

But we have measured a change in the rms charge radius: 

J. Thielking et al., Nature 556, 321 (2018)=0.0105(13) fm2



How does the very low energy appear?

„Magic“ cancellation of contributions from Coulomb and strong forces

V.V. Flambaum, Phys. Rev. Lett. 97, 092502 (2006)
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→ High sensitivity of a Th-229 nuclear clock in fundamental tests:

  Search for variations of fundamental constants

  or other violations of the Einstein equivalence principle



Nuclear Clock:

Oscillator that is frequency-stabilized 

to a nuclear (-ray) transition

Higher accuracy: 

The nuclear clock allows for a choice of a suitable electronic state 

for the interrogation of the nuclear resonance, for example in laser-cooled ions, Th3+.

Analyses of best suited electronic configurations:

E. Peik, Chr. Tamm, Europhys. Lett. 61, 181 (2003) → low values of electronic angular momenta J=0 or J=1/2

C. J. Campbell et al., PRL 108, 120802 (2012) → stretched states F=J+I, aligned electronic and nuclear momenta

Example: Electric fields, Stark effect:

Electrons shield the nucleus

(from homogeneous, static fields)
Nuclear polarizability is orders

of magnitude smaller; electronic effects 

are common-mode for both states 

of the transition. 



Nuclear Clock:

Oscillator that is frequency-stabilized 

to a nuclear (-ray) transition

Higher stability: 

In a Mössbauer solid state nuclear clock, many absorbers may be interrogated 

(>1015 instead of ≈100 (ion trap) or ≈104 (optical lattice)). Systematics: Crystal field shifts.

Proposed at PTB, UCLA, TU Wien

TU Vienna, CaF2UCLA, LiCAF



Mößbauer spectrum of the 
93.3 keV resonance of Zn-67

=−

G. Perlow et al., 1974

Nuclear gamma spectroscopy provides very high spectral resolution

Rudolf Mößbauer, 1961
(Nobel Foundation)

Mössbauer effect: Recoil-free resonance absorption
of gamma radiation by nuclei in a crystal lattice 

Nuclear Clock:
Replace the incoherent radioactive source 
with a tunable laser
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The Th-229 low-energy isomer: State of knowledge in 2020

E. Peik, T. Schumm, M. Safronova, A. Pálffy, J. Weitenberg, P.G. Thirolf,

Quant. Sci. Tech. 6, 034002 (2021)

ERC Synergy Grant

Thorium Nuclear Clock

2020-2026

Nilsson Model:

Deformed core plus unpaired neutron



• Near-resonantly driving of 2-photon transition in noble gas.

• Supplying one photon with IR yields fourth photon with VUV
 = 2UV – IR.

• Two-photon transition in Xe at 2 x 250 nm is suitable for VUV tunability from 167 nm to 148 nm, 

i.e. 7.42 eV to  8.38 eV.

noble gas

VUV
 = 2UV - IR

UV

UV

UV

IRIR

VUV

VUV

8-eV tunable VUV generation: Four wave mixing

See e.g.: S. J. Hanna et al., Int. J. Mass. Spectrom. 279,134 (2009) 



• Generating 148 nm VUV requires laser beams at 250 nm and 790 nm.

• Third order process needs high intensity to achieve suitable efficiency.

• Pulsed lasers (~10 ns, 30 Hz repetition rate) best compromise between VUV pulse energy 

(>1013 photons/pulse) and linewidth (<10 GHz).

• Our setup:

• Two cw Ti:Sa ring lasers as seed.

• Pulsed dye amplifiers (~60 mJ/pulse, 30 Hz repetition rate).

UV

UV

IR

VUV

VUV
 = 2UV - IR

Xe

8-eV tunable VUV generation: Four wave mixing



PTB - TU Wien cooperation:

Laser excitation of  229Th-doped calciumfluoride crystals

K. Beeks et al. (TU Wien), Phys. Rev. B 109, 094111 (2024)



VUV-sensitive

Cs-I photomultiplier 

Si-CCD detects 

photoluminescence  

in the vis. range

overall photon detection efficiency
Experimental setup



Resonant laser excitation, detected in VUV fluorescence

Excitation spectra at 148 nm: Hitting a narrow 

line with a broad laser. 

(each point: 120 s excitation, 150 s detection)

Line shapes after correction for the slow 

exponential fluorescence decay

Control experiment

with Th-232: no signal

J. Tiedau et al. (PTB – TU Wien cooperation), Phys. Rev. Lett. 132, 182501 (2024)



Fluorescence decay curves

Decay time constant: 618(9) s:

- Identical for differently doped X2 and C10 crystals

- Identical for C10 before and after refluorination with CF4 

- Independent of crystal temperature 100 – 320 K

- Expected to be enhanced by the mode density in the crystal ∞ n3 → isomer half-life 1740 s 

 



Laser-Induced Quenching of the Th-229 Nuclear Clock Isomer in Calcium Fluoride

F. Schaden et al. (TU Wien – PTB), Phys. Rev. Res. 7,  L022036 (2025)

Off-resonant 148 nm laser radiation



R. Elwell et al., Phys. Rev. Lett. 133, 013201 (2024)

Th-229 excitation in Th:LiSAF at UCLA

Ch. Zhang et al. (JILA and TU Wien), 
Nature 633, 63 (2024)

Th-229 excitation with the 7th harmonic of a fs-laser



CaF2= 2020.407384335(2) THz

C. Zhang et al.,

Nature 633, 63 (2024)



Trapped ions: Detection of the Nuclear Excitation in Nuclear-Electronic Double-Resonance

Nucleus in the ground state;

laser-induced fluorescence

from the shell. 

Laser excitation of the nucleus;

change of hyperfine structure detected in

intensity or polarisation of fluorescence.

Analog of Dehmelt‘s „electron shelving“

Observation of „quantum jumps“ in the single-ion fluorescence

Coupled degrees of freedom and long nuclear coherence time 

E. Peik, Chr. Tamm, Europhys. Lett. 61, 181 (2003)

229Th2+: Detection of the isomer in HFS 

J. Thielking et al. (PTB & LMU), 

Nature 556, 321 (2018)



229Th3+ trapped recoil ions from 233U, sympathetically cooled with 88Sr+

G. Zitzer, J. Tiedau , M. V. Okhapkin , K. Zhang, C. Mokry, J. Runke, Ch. E. Düllmann , E. Peik, 

Phys. Rev. A 109, 033116 (2024)

Fluorescence of Sr+, Th3+ appear darkSimulated Coulomb crystals:

blue Sr+, red: Th3+

229Th recoil ions include

   ≈2% isomers 229mTh
230Th: reference isotope

   with I=0



Hyperfine structure of 229Th3+ in the nuclear ground state

G. Zitzer, J. Tiedau, Ch. E. Düllmann, M. V. Okhapkin, E. Peik, Phys. Rev. A 111, L050802 (2025)

Next objective: improved hyperfine structure and nuclear moments of the isomer.

→ relevant info on nuclear charge distribution and nuclear transition matrix element.  

Electronic levels of 229Th3+ 



• Infrared diode laser at 1187 nm, stabilized to reference resonator (e.g. cryo silicon) 
→ <<1 Hz linewidth demonstrated 

• VUV generation by 3× successive frequency doubling in nonlinear optical crystals

22

A narrow-linewidth CW laser source for 148 nm

Resonator for 

frequency stabilization 

SHG to 
594 nm

SHG to 
297 nm

SHG to 
148 nm

Diode Laser
1187 nm

Strontium tetraborate (SBO): SrB4O7 

• Transparent down to 120 nm

• Nonlinear coefficient: d33 = 1.5 – 3.5 pm/V: highest of 

all known VUV crystals

• Spontaneously poled domains during growth with 

opposite orientation for random quasi-phase-matching

• SHG of fs-pulses demonstrated down to 121 nm: 

P. Trabs,…V. Petrov, (Max-Born-Inst., Berlin)

Opt. Lett. 41, 618 (2016) 
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148 nm CW laser source

▪ CW radiation at 297 nm from frequency-quadrupled 

laser (Toptica TA-FHG pro)

▪ SBO is mounted on a 5-axis translation stage.

▪ The main challenge of SHG detection is to achieve 

sufficient suppression of fundamental radiation.

▪ To detect VUV signal in fW range from ~0.3 W 

fundamental radiation, a suppression factor of 1014 is 

required.

▪ Two dichroic mirrors in combination with a spectrometer 

grating, and solar-blind CsI PMT with low UV sensitivity.



SHG optimization

▪ The irregular domain structure of SBO crystal is 

inhomogeneous across the sample.

▪ A beam radius of ~ 25 µm for the fundamental 

radiation was used.

▪ The recorded PMT signal showing fundamental and 

SHG spectra.

▪ The SHG signal at 148 nm vanishes under 

atmospheric condition due to high absorption of the 

VUV light



VUV power measurements

▪ Signal detection: photon counting and PMT current 

measurements.

▪ Both PMT current and PMT count signals show 

quadratic dependence on the fundamental power below 

200 mW.

▪ The generated VUV power is 1.3−0.5
+0.7 nW at an incident 

UV power of 325 mW.

▪ The large uncertainty arises from discrepancies 

between the two-detection method and the uncertainty 

in the detection efficiency of the setup.

V. Lal, M. V. Okhapkin, J. Tiedau, N. Irwin, V. Petrov, E. Peik, arXiv:2507.17719

See also: Qi Xiao et al., arXiv:2507.19449: CW four-wave-mixing in cadmium vapor 



What‘s next?

• Building narrow-linewidth VUV lasers

• Dynamics and lineshapes in the Th-doped crystals

• New materials, different host crystals

• Exciting the nuclear transitions in trapped Th ions

• Th-229 nuclear clocks in tests of fundamental physics  
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