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Quantum sensing and computation
— Why together?
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Quantum metrology has many important applications in science and technology, ranging
from frequency spectroscopy to gravitational wave detection. Quantum mechanics imposes a
fundamental limit on measurement precision, called the Heisenberg limit, which can be
achieved for noiseless quantum systems, but is not achievable in general for systems subject
to noise. Here we study how measurement precision can be enhanced through quantum error
correction, a general method for protecting a quantum system from the damaging effects of
noise. We find a necessary and sufficient condition for achieving the Heisenberg limit using
quantum probes subject to Markovian noise, assuming that noiseless ancilla systems are
available, and that fast, accurate quantum processing can be performed. When the sufficient
condition is satisfied, a quantum error-correcting code can be constructed that suppresses
the noise without obscuring the signal; the optimal code, achieving the best possible preci-
sion, can be found by solving a semidefinite program.
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Hard fact / Soft fact




Excursion #1

Heisenberg vs. Grover




Heisenberg and standard quantum limit

Setting: Magnetic field of unknown strength B—measure it!

The Hamiltonian is

H=-BY o
=1
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Option 1

n=1 ,
H=-BY o
1=1

e Choose n =1 (one single spin only).

e Prepare initial state (|0) 4+ |1))/v/2, evolve H for some fixed
time t, measure observable oy.

e Repeat N times.

AcCcuracy:

1
ABoc\/N

This is the standard quantum Ilimit



Option 2

N
H=-BY oV,
1=1

e Choose n = N (prepare N spins).

e Prepare initial state (|00..0)+4[111..1))/+/2, evolve H for some
fixed time ¢, measure observable X := Q¥ _, aa(f).

e Repeat once.

AcCcuracy:

1

This is the Heisenberg limit. It provides a quadratic speedup.



In both cases ..

. evolution happens in a 2d Hilbert space.
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Grover’s data base search

Who$ number s 0162 7615421¢

Find a data base entry w among N, using a quantum oracle

—|w), target
lv), Yo #= w.

Uoracle|’w>
Uoracle|v>

e Grover's algorithm does this in o« v/ N oracle calls.

e Classically, require o< N steps.

Again, a quadratic speedup. Is the analogy superficial, or does

) ) _— O
it have a basis?
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Grover too: evolution in 2d
c>>
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We observe: Coherent accumulation of phase powers both Heisen-
berg and Grover



Lessons from Excursion #1
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Lessons from Excursion #1
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Lessons from Excursion #1
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e Want w to arise with probability p(w) > 1/2, say. However,
you do not care about the precise value of p(w).

e You (the Grover-operator) are interested in sampling from p,
not in knowing p.



Excursion #2

T he threshold theorem of fault-tolerant
quantum computation




Threshold Theorem

Theorem: If the error of every operation in a guantum computa-
tion is below a critical constant value ¢, then arbitrarily accurate
logical gates and measurements can be performed, and arbitrarily
long quantum computation is possible and efficient.

Brodty occepbedl versip, & rf 2005 (Atifers b Prevei )



T hreshold Theorem
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Theorem: If the error of every operation in a quantum/computa-
tion is ‘below a critical constant value e, then
logical gates an can be performed, and arbitrarily
long quantum computation is possible and efficient.




T hreshold Theorem
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Theorem: If tr\e error of every operation in a quantum computa-
tion is
logical gates and measurements can be performed, and arbitrarily
long quantum computation is possible and efficient.
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10~% is good enough
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Accuracy of what?
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only the outcomes of individual measurement events count



The ke rules of quantum measurement
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Of battles past
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Are systems that display topological quantum order (TQO), and have a gap to excitations, hardware fault-
tolerant at finite temperatures? We show that in models that display low d-dimensional gaugelike symmetries,
such as Kitaev’s and its generalizations, the expectation value of topological symmetry operators vanishes at
any nonzero temperature, a phenomenon that we coined thermal fragility. The autocorrelation time for the
nonlocal topological quantities in these systems may remain finite even in the thermodynamic limit. We
provide explicit expressions for the autocorrelation functions in Kitaev’s toric code model. If temperatures far
below the gap may be achieved then these autocorrelation times, albeit finite, can be made large. The physical
engine behind the loss of correlations at large spatial and/or temporal distance is the proliferation of topological

We analyze surface codes, the topological quantum error-correcting codes intro-
duced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on
a surface of nontrivial topology, and encoded quantum operations are associated
with nontrivial homology cycles of the surface. We formulate protocols for error
recovery, and study the efficacy of these protocols. An order-disorder phase transi-
tion occurs in this system at a nonzero critical value of the error rate; if the error
rate is below the critical value (the accuracy threshold), encoded information can

defects at any finite temperature as a result of a dimensional reduction. This raises an important question: How
may we best quantify the degree of protection of quantum information in a topologically ordered system at
~° emperature?

be protected arbitrarily well in the limit of a large code block. This phase transi
can be accurately modeled by a three-dimensional Z, lattice gauge theorv v /PhysRevB.77.064302 PACS number(s): 05.30.—d, 03.67.Pp, 05.30.Pr, 11.15.—q
quenched disorder. We estimate the accuracy threshold, assuming that : . . .
gates are local, that qubits can be measured rapidly, and that polynomi ¢ IRRODUCTION ﬁ:‘f;j{,’{fi"‘;."j,. "22::5:}::3:111:;; O,fn ‘3‘;51?;38.:",
sical computations can be executed instantancously. We also devise a r nformation over long times in the  been 1 wﬁmei” i work by Castelnovo and Chamon’ in their
ery procedure that does not require measurement or fast classical proc “ces is related to the existence of  swudy of the topological entanglement entropy. In the present
ever, for this proced‘xrc t].1c qugmum gale.s are local only if the qublt§ ation times. The storage of infor-  work we will present extensions of our ideas to higher spatial
in four or more spatial dimensions. We discuss procedures for encodi: to the breaking of ergodicity at  dimensions D and expand on the physical reasons leading to
ment, and performing fault-tolerant universal quantum computation  C—— ) the autocorrelation time. Classical  thermal fragility. In particular, we show that a general Z;
codes, and argue that these codes provide a promising framework y stored in magnetically or in elec-  gauge theory in D spatial dimensions in a system with peri-
computing architectures. © 2002 American Institute of Physics. ‘arized materials. From the physi-  odic boundary conditions displays rank-n=k” TQO. Never-
[DOL: 10.1063/1.1499754] iability may be directly linked totheless, although a thermodynamic phase transition may oc-
parameter (its macroscopic mag-  cur, the system is thermally fragile. We investigate not only
1) which characterizes a collective  the thermodynamic but also the dynamical aspects of thermal
1. INTRODUCTION ‘e material below an ordering tran-  fragility, and in cases such as Kitaev’s toric code model we
core, nonergodicity implies the ex-  also obtain exact analytic time-dependent results thanks to
The microscopic world is quantum mechanical, but the macroscopic wc ;mier parameter (e.g., the overlap  qur duality mappings.”
fundamental dichotomy arises because a coherent quantum superposition ¢ - . .
guishable macroscopic states is highly unstable. The quantum state of a [ quantum information is a real chal- IL LANDAU ORDERS VS TQO
N I . N N - ‘ ateractions between a quantum sys-
rapidly _d“e to ) eract between the system and or measurement apparatus introduce Before defining TQO, and to put this latter concept in
Decoherence is so pervasive that it might seem to preclude subtle tem leading to decoherence of pure  perspective, let us briefly review the rudiments of a Landau
phenomena in systems with many degrees of freedom. However, recent ady states. Fortunately, quantum states  order parameter. The Landau order parameter, a macroscopic
quantum error correction suggest otherwise.'? We have learned that quantu oded fault tolerantly and be protected  property measuring the degree of order in a state of matter, is
erly encoded so that the debilitating effects of decoherence, if not too se us pi ing loss of i ion.! ily associated with the breaking of a global symme-
Furthermore, fault-tolerant protocols have been devised that allow an encod: X the heart of topological quantum order try. Thus the existence of an order parameter is directly at-
reliably processed by a quantum computer with imperfect components.” In _, therflvery 11QU) Sys‘emq first advanced by Kitaev.> Assuming that tached to the phenomenon of spontancous symmetry break-
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states, information processing can prevent information loss. In this article, we will study a par-
ticular approach to quantum fault tolerance that has notable advantages: in this approach, based on

the surface e —————

~~eded to control errors has

of physical fault tolerance to weak quasilocal perturbations.
However, are these quantum memories robust to thermal ef-
fects?

In this work, we analyze the effect of temperature on
zero-temperature  (T'=0) topologically ordered quantum

and particle physics that many excellent textbooks (sce, for
example, Ref. 8) have spent cntire chapters (or even a full
book?) describing it. For the present purposes, we illustrate
the concept in the simple case of a ferromagnet. A piece of
iron at high itisina i
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We analyze surface codes, the topological quantum error-correcting codes intro-
duced by Kitaev. In these codes, qubits are arranged in a two-dimensional array on Lol ¢
a surface of nontrivial topology, and encoded quantum operations are associated
with nontrivial homology cycles of the surface. We formulate protocols for error
recovery, and study the efficacy of these protocols. An order-disorder phase transi-

tion occurs in this system at a nonzero critical value of the error rate; if the error
rate is below the critical value (the accuracy threshold), encoded information can
be protected arbitrarily well in the limit of a large code block. This phase transition
can be modeled by a three-dimensional Z, lattice gauge theory with
quenched disorder. We estimate the accuracy threshold, assuming that all quantum
gates are local, that qubits can be measured rapidly, and that polynomial-size clas-

‘ : 3 8 <
sical can be executed ‘We also devise a robust recov-
ery procedure that does not require measurement or fast classical processing; how- “
ever, for this procedure the quantum gates are local only if the qubits are arranged
in four or more spatial dimensions. We discuss procedures for encoding, measure- -

ment, and performing fault-tolerant universal quantum computation with surface
codes, and argue that these codes provide a promising framework for quantum
computing architectures. © 2002 American Institute of Physics.

[DOL: 10.1063/1.1499754]

1. INTRODUCTION

The microscopic world is quantum mechanical, but the macroscopic world is classical. This
fundamental dichotomy arises because a coherent quantum superposition of two readily distin-
guishable macroscopic states is highly unstable. The quantum state of a macroscopic system

<
rapidly de due to ions between the system and its surroundings.
Decoherence is so pervasive that it might seem to preclude subtle quantum interference
phenomena in systems with many degrees of freedom. However, recent advances in the theory of
quantum error correction suggest otherwise.'? We have learned that quantum states can be clev-
erly encoded so that the debilitating effects of decoherence, if not too severe, can be resisted.

Furthermore, fault-tolerant protocols have been devised that allow an encoded quantum state to be
reliably processed by a quantum computer with imperfect components.® In principle, then, very
intricate quantum systems can be stabilized and accurately controlled.

The theory of quantum fault tolerance has shown that, even for delicate coherent quantum
states, information processing can prevent information loss. In this article, we will study a par-

ticular approach to quantum fault tolerance that has notable advantages: in this approach, based on

the surface codes introduced in Refs. 4 and 5, the quantum processing needed to control errors has

“ICALT-68-2346 C
YElectronic mail: edennis@princeton edu

“Electronic mail: kitaev@igi caltech.edu

YElectronic mail: alandahl@theory.caltech.edu

“Author to whom correspondence should be addressed. Electronic mail: preskill @theory.caltech.edu

0022-2488/2002/43(9)/4452/54/$19.00 4452 © 2002 American Institute of Physics
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Are systems that display topological quantum order (TQO), and have a gap to excitations, hardware fault-
tolerant at finite temperatures? We show that in models that display low d-dimensional gaugelike symmetries,
such as Kitaev’s and its generalizations, the expectation value of topological symmetry operators vanishes at
any nonzero temperature, a phenomenon that we coined thermal fragility. The autocorrelation time for the
nonlocal topological quantities in these systems may remain finite even in the thermodynamic limit. We
provide explicit expressions for the autocorrelation functions in Kitaev’s toric code model. If temperatures far
below the gap may be achieved then these autocorrelation times, albeit finite, can be made large. The physical
engine behind the loss of correlations at large spatial and/or temporal distance is the proliferation of topological
defects at any finite temperature as a result of a dimensional reduction. This raises an important question: How
may we best quantify the degree of protection of quantum information in a topologically ordered system at

finite temperature?
DOI: 10.1103/PhysRevB.77.064302
L INTRODUCTION

The perseverance of information over long times in the
simplest of memory devices is related to the existence of
large associated autocorrelation times. The storage of infor-
mation is intimately tied to the breaking of ergodicity at
scales much smaller than the autocorrelation time. Classical
information can be reliably stored in magnetically or in elec-
trically (permanently) polarized materials. From the physi-
cist’s perspective, this reliability may be directly linked to
the existence of an order parameter (its macroscopic mag-
netization or polarization) which characterizes a collective
and robust property of the material below an ordering tran-
sition temperature. At its core, nonergodicity implies the ex-
istence of a generalized order parameter (e.g., the overlap
parameter of spin glasses).

The reliable storage of quantum information is a real chal-
lenge. The uncontrolled interactions between a quantum sys-
tem and its environment or measurement apparatus introduce
noise (errors) in the system leading to decoherence of pure
quantum superposition states. Fortunately, quantum states
can, in principle, be encoded fault tolerantly and be protected

. o

against thus loss of

PACS number(s): 05.30.—d, 03.67.Pp, 05.30.Pr, 11.15.—q

results® concerning the singular character of the T=0 TQO in
one notable system (Kitaev’s toric code model) have later
been reaffirmed in work by Castelnovo and Chamon’ in their
study of the topological entanglement entropy. In the present
work we will present extensions of our ideas to higher spatial
dimensions D and expand on the physical reasons leading to
thermal fragility. In particular, we show that a general 7
gauge theory in D spatial dimensions in a system with peri-
odic boundary conditions displays rank-n=kP TQO. Never-
theless, although a thermodynamic phase tra
cur, the system is thermally fragile. We investigate not only
the thermodynamic but also the dynamical aspects of thermal
fragility, and in cases such as Kitaev’s toric code model we
also obtain exact analytic time-dependent results thanks to
our duality mappings.®

1L LANDAU ORDERS VS TQO

Before defining TQO, and to put this latter concept in
perspective, let us briefly review the rudiments of a Landau
order parameter. The Landau order parameter, a macroscopic
property measuring the degree of order in a state of matter, is

This idea lies at the heart of topological quantum order
(TQO) systems as first advanced by Kitaev. Assuming that
errors are of a local nature, topological quantum memories
(e.g., surface codes?) seem to be intrinsically stable because
of physical fault tolerance to weak quasilocal perturbations.
However, are these quantum memories robust to thermal ef-
fects?

In this work, we analyze the effect of temperature on
zero-temperature (T'=0) topologically ordered quantum
systems,** such as Kitaev’s toric code? and honeycomb
models® and generalizations thereof. To this end, we need to
present two concepts that were introduced in our previous
work.® One is the concept of finite-7 TQO, and the other of
rank-n TQO. In that same work we studied the thermal fra-
gility of topological operators in D=2 lattice models. Our

1098-0121/2008/77(6)/064302(16) 064302-1

associated with the breaking of a global symme-
try. Thus the existence of an order parameter is directly at-
tached to the phenomenon of spontaneous symmetry break-
ing (SSB). This concept, that involves an infinite number of
degrees of freedom, is so fundamental to condensed matter
and particle physics that many excellent textbooks (see, for
example, Ref. 8) have spent entire chapters (or even a full
book?) describing it. For the present purposes, we illustrate
the concept in the simple case of a ferromagnet. A piece of
iron at high itis in a i

phase. Below a certain temperature T, the system orders, i.e.,
it magnetizes, and with the appearance of the order param-
eter (magnetization) there is a breaking of the rotational
symmetry.' In the (ferro)magnetic phase there is a net mag-
netization M that persists all the way to zero temperature
(where it attains its maximal value). The magnetization can,

©2008 The American Physical Society
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Intuition about this
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About the Zeno effect
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QEC as Zeno effect
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QEC as Zeno effect
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Summary of Excursion 2
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Excursion #3

o
Error-corrected sensing




The problems (2)
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Error-corrected sensing
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Back to QC: The Eastin-Knill Theorem
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Back to QC: The Eastin-Knill Theorem
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Measurement overcomes Eastin-Knill
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TO sum up ..
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